Viscoplastic Self-Consistent (VPSC) Modeling for Predicting the Deformation Behavior of Commercial EN AW-7075-T651 Aluminum Alloy

Article Preview

Abstract:

Viscoplastic self-consistent (VPSC) modeling was used for investigating the deformation behavior of commercial EN AW-7075-T651 aluminum alloy at room temperature under quasi-static tension and compression (i) parallel, (ii) diagonal and (iii) transverse to the rolling direction. Textures of the as-received plate and of the samples after tensile and compression testing were determined using electron backscatter diffraction (EBSD). Euler angles and area fractions of the grains were used as input for calculating direction-dependent flow curves and pole figures of the deformed material. The coefficients of the integrated Voce strain hardening law were adjusted in order to fit the calculated flow curves to flow curves obtained from tensile and compression testing. Pole figures calculated with the VPSC modeling method were validated with pole figures obtained from EBSD analysis of deformed samples. VPSC modeling was successfully applied for predicting the general deformation behavior of EN AW-7075-T651 under both tension and compression. However, texture evolution during tensile testing was negligible, whereas notable texture evolution during compression testing occurred beyond a critical strain value.

You have full access to the following eBook

Info:

Periodical:

Pages:

2109-2118

Citation:

Online since:

July 2022

Export:

* - Corresponding Author

[1] H. Hu, Texture of Metals, Texture 1 (1974) 233-258.

Google Scholar

[2] H.-J. Bunge, Three-dimensional texture analysis, Int. Mater. Rev. 32 (1987) 265-291.

Google Scholar

[3] S. Suwas, R.K. Ray, Crystallographic Texture of Materials, Springer London (2014).

Google Scholar

[4] F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite element modeling: Theory, experiments, applications, Acta Mater. 58 (2010) 1152-1211.

DOI: 10.1016/j.actamat.2009.10.058

Google Scholar

[5] D. Helm, A. Butz, D. Raabe, P. Gumbsch, Microstructure-based description of the deformation of metals: theory and application, JOM 63 (2011) 26-33.

DOI: 10.1007/s11837-011-0056-8

Google Scholar

[6] R.A. Lebensohn, C.N. Tomé, A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys, Acta Metall. Mater. 41 (1993) 2611-2624.

DOI: 10.1016/0956-7151(93)90130-k

Google Scholar

[7] R.A. Lebensohn, C.N. Tomé, A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals, Mater. Sci. Eng. A 175 (1994) 71-82.

DOI: 10.1016/0921-5093(94)91047-2

Google Scholar

[8] D. Tang, W. Fang, X. Fan, T. Zou, Z. Li, H. Wang, D. Li, Y. Peng, P. Wu, Evolution of the Material Microstructures and Mechanical Properties of AA 1100 Aluminum Alloy within a Complex Porthole Die during Extrusion, Materials 12 (2019) 16.

DOI: 10.3390/ma12010016

Google Scholar

[9] S.-H. Choi, F. Barlat, Prediction of macroscopic anisotropy in rolled aluminum-lithium sheet, Scripta Mater. 41 (1999) 981-987.

DOI: 10.1016/s1359-6462(99)00241-9

Google Scholar

[10] M. Suresh, A. Sharma, A.M. More, R. Kalsar, A. Bisht, N. Nayan, S. Suwas, Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al-Cu-Li alloy AA2195, J. Alloys Compd. 785 (2019) 972-983.

DOI: 10.1016/j.jallcom.2019.01.161

Google Scholar

[11] X. Chen, Y. Peng, C. Chen, J. Li, K. Wang, T. Wang, Mechanical behavior and texture evo-lution of aluminum alloys subjected to strain path changes: Experiments and modeling, Mater. Sci. Eng. A. 757 (2019) 32-41.

DOI: 10.1016/j.msea.2019.04.091

Google Scholar

[12] S.-H. Choi, J.C. Brem, F. Barlat, K.H. Oh, Macroscopic anisotropy in AA 5019A sheets, Acta Mater. 48 (2000) 1853-1863.

DOI: 10.1016/s1359-6454(99)00470-x

Google Scholar

[13] S.-H. Choi, J.-K. Choi, H.-W. Kim, S.-B. Kang, Effect of reduction ratio on annealing texture and r-value directionality for a cold-rolled Al-5% Mg alloy, Mater. Sci. Eng. A 519 (2009) 77-87.

DOI: 10.1016/j.msea.2009.05.063

Google Scholar

[14] L. Hu, A.D. Rollett, M. Iadicola, T. Foecke, S. Banovic, Constitutive Relations for AA 5754 Based on Crystal Plasticity, Metall. Mater. Trans. A 43 (2012) 854-869.

DOI: 10.1007/s11661-011-0927-1

Google Scholar

[15] M.A. Iadicola, L. Hu, A.D. Rollett, T. Foecke, Crystal plasticity analysis of constitutive behavior of 5754 aluminum sheet deformed along bi-linear strain paths, Int. J. Solids Struct. 49 (2012) 3507-3516.

DOI: 10.1016/j.ijsolstr.2012.03.015

Google Scholar

[16] A. Pandey, A.S. Khan, E.-Y. Kim, S.-H. Choi, T. Gnäupel-Herold, Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA 5754 over low to high temperatures and strain rates, Int. J. Plast. 41 (2013) 165-188.

DOI: 10.1016/j.ijplas.2012.09.006

Google Scholar

[17] O. Engler, J. Aegerter, Texture and anisotropy in the Al-Mg alloy AA 5005 – Part II: Corre-lation of texture and anisotropic properties, Mater. Sci. Eng. A 618 (2014) 663-671.

DOI: 10.1016/j.msea.2014.08.040

Google Scholar

[18] K. Wang, B. Zhou, J. Li, J.E. Carsley, Y. Li, Characterization of Plastic Anisotropy of AA 5182-O Sheets During Prestraining and Subsequent Annealing, J. Manuf. Sci. Eng. 140 (2018) 081004.

DOI: 10.1115/1.4040157

Google Scholar

[19] Z. Li, Z. Zhang, G. Zhou, P. Zhao, Z. Jia, W.J. Poole, The effect of Mg and Si content on the microstructure, texture and bendability of Al-Mg-Si alloys, Mater. Sci. Eng. A 814 (2021) 141199.

DOI: 10.1016/j.msea.2021.141199

Google Scholar

[20] C.N. Tomé, R.A. Lebensohn, C.T. Necker, Mechanical Anisotropy and Grain Interaction in Recrystallized Aluminum, Metal. Mater. Trans. A 33 (2002) 2635-2648.

DOI: 10.1007/s11661-002-0385-x

Google Scholar

[21] X. Wang, M. Guo, Y. Zhang, H. Xing, Y. Li, J. Luo, J. Zhang, L. Zhuang, The dependence of microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheet on final cold rolling deformation, J. Alloys Compd. 657 (2016) 906-916.

DOI: 10.1016/j.jallcom.2015.10.070

Google Scholar

[22] X. Wang, M. Guo, J. Zhang, L. Zhuang, Effect of Zn addition on the microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloys, Mater. Sci. Eng. A 677 (2016) 522-533.

DOI: 10.1016/j.msea.2016.09.084

Google Scholar

[23] O. Fergani, A. Tabei, H. Garmestani, S.Y. Liang, Prediction of polycrystalline materials texture evolution in machining via Viscoplastic Self-Consistent modeling, J. Manuf. Process. 16 (2014) 543-550.

DOI: 10.1016/j.jmapro.2014.07.004

Google Scholar

[24] O. A. Velazquez-Carrillo, F. A. García-Pastor, Thermal stability of microstructure, mechanical properties, formability parameters and crystallographic texture in an Al-7075 alloy processed by accumulative roll bonding, J. Mater. Res. Technol. 11 (2021) 2208-2220.

DOI: 10.1016/j.jmrt.2021.02.041

Google Scholar

[25] B. Zhou, B. Liu, S. Zhang, The Advancement of 7XXX Series Aluminum Alloys for Aircraft Structures: A Review, Metals 11 (2021) 718.

DOI: 10.3390/met11050718

Google Scholar

[26] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. 14 (1966) 1479-1484.

DOI: 10.1016/0001-6160(66)90168-4

Google Scholar

[27] C.N. Tomé, R.A. Lebensohn, Manual for Code Viscoplastic Self-Consistent (VPSC) Version 7c, Los Alamos, (2009).

Google Scholar

[28] R.A. Lebensohn, C.N. Tomé, P. Ponte Castañeda, Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations, Philos. Mag. 87 (2007) 4287-4322.

DOI: 10.1080/14786430701432619

Google Scholar

[29] C. Tomé, G.R. Canova, U.F. Kocks, N. Christodoulou, J.J. Jonas, The relation between macro-scopic and microscopic strain hardening in F.C.C. polycrystals. Acta Metall. 32 (1984) 1637-1653.

DOI: 10.1016/0001-6160(84)90222-0

Google Scholar

[30] G.E. Dieter, Mechanical Metallurgy SI Metric Edition, 3rd ed., McGraw-Hill, London, (1988).

Google Scholar

[31] R.F.S. Hearmon, Temperature dependence of the elastic constants of aluminium, Solid State Commun. 37 (1981) 915-918.

DOI: 10.1016/0038-1098(81)90509-3

Google Scholar

[32] MTEX Toolbox | MTEX, https://mtex-toolbox.github.io (accessed Nov. 29, 2021).

Google Scholar

[33] T. Børvik, O.S. Hopperstad, K.O. Pedersen, Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates, Int. J. Impact Eng. 37 (2010) 537-551.

DOI: 10.1016/j.ijimpeng.2009.11.001

Google Scholar

[34] M. Fourmeau, T. Børvik, A. Benallal, O.G. Lademo, O.S. Hopperstad, On the plastic aniso-tropy of an aluminium alloy and its influence on constrained multiaxial flow, Int. J. Plast. 27 (2011) 2005-2025.

DOI: 10.1016/j.ijplas.2011.05.017

Google Scholar

[35] K. Senthil, M.A. Iqbal, P.S. Chandel, N.K. Gupta, Study of the constitutive behavior of 7075-T651 aluminum alloy, Int. J. Impact Eng. 108 (2017) 171-190.

DOI: 10.1016/j.ijimpeng.2017.05.002

Google Scholar

[36] A.D. Rollett, R. Campman, D. Saylor, Three Dimensional Microstructures: Statistical Analysis of Second Phase Particles in AA7075-T651, Mater. Sci. Forum 519-521 (2006) 1-10.

DOI: 10.4028/www.scientific.net/msf.519-521.1

Google Scholar

[37] A. Kazemi-Navaee, R. Jamaati, H. Jamshidi Aval, Asymmetric cold rolling of AA7075 alloy: The evolution of microstructure, crystallographic texture, and mechanical properties, Mater. Sci. Eng. A 824 (2021) 141801.

DOI: 10.1016/j.msea.2021.141801

Google Scholar