Impedance Spectroscopy and Study of Electrical Properties of Pb(Zr0.52Ti0.48)1-xFexO3-x (0≤x≤0.20) Ceramics

Article Preview

Abstract:

Iron substituted Lead zirconate titanate nanoparticles Pb (Zr0.52Ti0.48) 1-x FexO3-x (PZTFx) (for (x=0.00, 0.025, 0.05, 0.075, 0.10, 0.15 and 0.20) was prepared using the sol-gel route in the morphotropic phase boundary (MPB) region. The X-ray diffraction data revealed the formation of both rhombohedral and tetragonal structures. The microstructural properties of the compounds were examined through the scanning electron microscopy (SEM) technique. The impedance spectroscopy and conductivity spectroscopy were carried out over a wide range of temperatures (RT–400°C) and frequencies (100 Hz–2 MHz) to investigate the grain and grain boundary effect on the electrical properties of PZTFx. The complex impedance analysis data have been presented in the Nyquist plot which is used to identify the corresponding equivalent circuit and fundamental circuit parameters. Cole– Cole plots indicate Debye-type dielectric relaxation and the grain boundaries resistance is dominant at room temperature. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) character of PZTFx ceramics. The dielectric properties of (PZTFx) ceramics as a function of temperature are studied and displayed a resonance phenomenon for all samples. Temperature-dependent conductivity behavior indicated an Arrhenius type of thermally activated process in the low-temperature region. Activation energy has been calculated from the temperature-dependent DC electrical conductivity measurements for all the samples.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1096)

Pages:

37-48

Citation:

Online since:

August 2023

Export:

Price:

* - Corresponding Author

[1] Chuan CHEN, Yan WANG, Zong-Yue L, Chun LIU, Wen GONG,Qing TAN, Bing HAN, Fang-Zhou YAO, Ke WANG, Evolution of electromechanical properties in Fe-doped (Pb,Sr)(Zr,Ti)O3 piezoceramics, Journal of Advanced Ceramics 2021, 10(3): 587–595

DOI: 10.1007/s40145-021-0460-7

Google Scholar

[2] Oliveiran C A, Longo E, Varela J A, and Zaghete M A, Synthesis and characterization of lead zirconate titanate (PZT) obtained by two chemical methods, Journal of Ceramics International vol 40 (2014) 1717–1722. [3] Li J, Broadband Dielectric Response in Hard and Soft PZT: Understanding Softening and Hardening Mechanisms, école Polytechnique fédérale de Lausanne (2011) 4988.

DOI: 10.1016/j.ceramint.2013.07.068

Google Scholar

[4] C.A. Oliveira, E. Longo, J.A. Varela, and M.A. Zaghete, Synthesis and characterization of lead zirconate titanate (PZT) obtained by two chemical methods, Ceramics International Volume 40, Issue 1, Part B, January (2014) Pages 1717-1722

DOI: 10.1016/j.ceramint.2013.07.068

Google Scholar

[5] Venkata R M et al, Investigation, and characterization of Pb(Zr0.52Ti0.48)O3 nanocrystalline ferroelectric ceramics: By conventional and microwave sintering methods, Materials Chemistry and Physics Vol 126, 15 March (2011), pp.295-300.

DOI: 10.1016/j.matchemphys.2010.11.023

Google Scholar

[6] Noheda B, Gonzalo J A, A tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3, Physical review. B, Condensed matter The American Physical Society vol 61, (2000) number 13.

Google Scholar

[7] Esmaeil Pakizeh, Optical response and structural properties of Fe-doped Pb(Zr0.52Ti0.48)O3 nanopowders, Journal of Materials Science: Materials in Electronics 2020

DOI: 10.1007/s10854-020-03050-1

Google Scholar

[8] Kour P, Pawan K M K and Sinha S K, Enhance of ferroelectric properties by modifying Pb2+ side by Mg2+ in PZT (52/48) ceramics, AIP Conference Proceedings (2013) 1512, 1276.

DOI: 10.1063/1.4791518

Google Scholar

[9] R. N. Perumal, S. Sadhasivam, and V. Athikesavan, Structural, dielectric, AC conductivity, piezoelectric and impedance spectroscopy studies on PbZr0.52Ti0.48O3:Re3+(Re3+: La3+, Nd3+ and Dy3+) ceramics, Results Phys., vol. 15, no. November (2018), p.102729.

DOI: 10.1016/j.rinp.2019.102729

Google Scholar

[10] Shibnath Samanta, Martando Rath, Venkataraman Sankaranarayanan, Kanikrishnan Sethupathi,and M. S. Ramachandra Rao, Effective Bandgap Engineering in Perovskite Ferroelectrics by Successive Multiple Doping, Phys. Status Solidi B 2019, 1900272

DOI: 10.1002/pssb.201900272

Google Scholar

[11] J. Suchanicz, N.-T. Kim-Ngan, K. Konieczny, I. Jankowska-Sumara, and A. G. Balogh, Soft and hybrid-doped Pb(Zr,Ti)O3 ceramics under stress, electric field, and temperature loading, J. Appl. Phys. 109, 104105 (2011);.

DOI: 10.1063/1.3585826

Google Scholar

[12] Prasenjit Prasad Sukul, Hendrik Swart, Kaushal Kumar, Boltzma nn relation reliability in optical temperature sensing based on upconve rsion studies of Er3+/Yb3+ co-doped PZT ceramics, the journal of biological and chemical Luminescence. 2022;1–90

DOI: 10.1002/bio.4354

Google Scholar

[13] L. Amarande, C. Miclea, M. Cioangher, M.N. Grecu, I. Pasuk, Effects of vanadium doping on sintering conditions and functional properties of Nb‐Li co-doped PZT ceramics. Comments on Li location, Volume 685, 15 November 2016, Pages 159-166 https://doi.org/

DOI: 10.1016/j.jallcom.2016.05.266

Google Scholar

[14] A. Kumar, A. Goswami, K. Singh, R. McGee, T. Thundat, D. Kaur, Magnetoelectric coupling in Ni-Mn-In/PLZT artificial multiferroic heterostructure and its application in mid-IR photothermal modulation by external magnetic feld. ACS Appl. Electron.Mater. 1, 11 (2019)

DOI: 10.1021/acsaelm.9b00435

Google Scholar

[15] H.-S. Hsu, V. Benjauthrit, F. Zheng, R. Chen, Y. Huang, Q. Zhou, K.K. Shung, PMN-PT–PZT composite flms for high frequency ultrasonic transducer applications. Sens. Actuators A 179, (2012) 121–124

DOI: 10.1016/j.sna.2012.02.031

Google Scholar

[16] L.D. Geng, Y. Yan, S. Priya, Y.U. Wang, Computational study of cobalt-modifed nickel-ferrite/PZT magnetoelectric composites for voltage tunable inductor applications. Acta Mater. 166, (2019) 493–502

DOI: 10.1016/j.actamat.2019.01.010

Google Scholar

[17] Oliveiran C A, Longo E, Varela J A and Zaghete M A Synthesis and characterization of lead zirconate titanate (PZT) obtained by two chemical methods, Journal of Ceramics International vol 40 (2014) p.1717–1722.

DOI: 10.1016/j.ceramint.2013.07.068

Google Scholar

[18] Xiaoyan Z, et al Vertically Free-Standing Ordered Pb (Zr0.52Ti0.48) O3 Nanocup Arrays by Template-Assisted Ion Beam Etching, Nanoscale Research Letters SpringerOpen Journal (2016) 11:225.

DOI: 10.1186/s11671-016-1369-x

Google Scholar

[19] M. Ahabboud, T. Lamcharfi, F. Abdi, N. Hadi, F. Z. Ahjyaje, and M, Effect of Cu Doping on Structural and Dielectric Properties of Pb1-xCux(Zr0.52Ti0.48)O3(PC xZT) (0≤x ≤0.2) Ceramics Prepared by Sol-Gel Method, Chem., vol. 30, no. 18, (2018) p.2424–2430

DOI: 10.14233/ajchem.2021.23052

Google Scholar

[20] M. Ahabboud, M. Amarass, F Z. Ahjyaje, F. Abdi and T. Lamcharfi, Structural and dielectric properties of Pb (Zr0.52Ti0.48)1-3x/4Fex O3 ceramics at 0≤x≤0.20 prepared by sol-gel method, IOP Conf. Ser.Mater. Sci. Eng., p.1–3 (2021).

DOI: 10.1088/1757-899x/1160/1/012001

Google Scholar

[21] T. Thongchai, Fabrication of Lead Free and Lead Based Piezoelectric Composites for High Frequency ultrasound transducers, University of Birmingham, (2017).

Google Scholar

[22] M. Deluca et al, Raman spectroscopic study of phase transitions in undoped morphotropic PbZr1 -xTixO3, J. Raman Spectrosc., vol. 42, no. 3, p.488–495, (2011)

DOI: 10.1002/jrs.2714

Google Scholar

[23] T. Lamcharfi et al, Dielectric and relaxation studies in hydrothermal processed PLZT ceramics," vol. 6, no. 1, (2005) p.76–82.

Google Scholar

[24] Ahabboud Malika*, Gouitaa Najwa, Fatima Zahra Ahjyaje, Lamcharfi Taj-dine, Abdi Farid, Resonance Phenomenon and Structural Properties of Fe Substituted PZT Ceramics Prepared by the Sol-Gel Method, Iranian Journal of Materials Science and Engineering, Vol. 20, Number 1, March (2023)

Google Scholar

[25] T. J. Ikyumbur, F. Gbaorun, and S. A. Ochi, The Dielectric Study of Ethylene Glycol as a Coolant Using Davidson- Cole Relaxation Model, Curr. J. Appl. Sci. Technol. , vol. 32, no. 5, p.1–7, (2019)

DOI: 10.9734/cjast/2019/38947

Google Scholar

[26] A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective, J. Am. Ceram. Soc., vol. 92, no. 5, ((2009) p.967–983, doi: 10.1111/j.1551 -2916.2009.02990.

DOI: 10.1111/j.1551-2916.2009.02990.x

Google Scholar

[27] M. Prabu, B. Shameem Banu, S. Gobalakrishnan, P. K. Praseetha, Structural studies and electrical properties of PZT (52/48) electroceramics synthesized by sol–gel route, J Mater Sci: Mater Electron

DOI: 10.1007/s10854-016-4434-4

Google Scholar

[28] M. Prabu, I. B. Shameem Banu, S. Gobalakrishnan, and P. K. Praseetha, Structural studies and electrical properties of PZT (52/48) electroceramics synthesized bysol–gel route,J. Mater. Sci. Mater. Electron., vol. 27, no. 5, (2016) p.5351–5356.

DOI: 10.1007/s10854-016-4434-4

Google Scholar

[29] K. R. Sahu and U. De, Science Direct, Mater. Today Proc., vol. 11, p.859–868 (2019).

DOI: 10.1016/j.matpr.2019.03.057

Google Scholar

[30] Z. Zhu, N. Zheng, G. Li, and Q. Yin, Dielectric and electrical conductivity properties of PMSPZT ceramics, J. Am. Ceram. Soc., vol. 89, no. 2 (2006) p.717–719 doi: 10.1111/j.1551 -2916.2005.00750.x.

DOI: 10.1111/j.1551-2916.2005.00750.x

Google Scholar

[31] R. Gupta, S. Verma, D. Singh, K. Singh, and K. K. Bamzai, Effect of Ni / Nb on structure, electrical and ferroelectric properties of 0.5PNN-0.5PZT ceramics,(2015) p.1–9.

DOI: 10.2298/pac1501001g

Google Scholar

[32] Niranjan Sahu, S. Panigrahi, and Manoranjan Kar, Conduction Mechanism by Using CBH Model in Fe3+ and Mn3+ Ion Modified Pb(Zr0.65−xAxTi0.35)O3 (A = Mn3+/Fe3+) Ceramics, Journal of Materials Volume 2 013, Article ID 8 0212 3, 10 pages

DOI: 10.1155/2013/802123

Google Scholar