Systematic Characterization of the Crystalline Phase Transformation, from Amorphous to Rutile through Anatase, of TiO2 Nanofibers Synthesised by Electrospun Technique

Article Preview

Abstract:

TiO2 nanofibers were synthesised by means of the electrospun technique, which were annealed at high temperatures to achieve the crystalline phase transformation from amorphous to rutile through anatase and the phase mixture. The chemical stoichiometry of electrospun TiO2 nanofibers was estimated by EDS, finding that at low annealing temperatures excess of oxygen was detected and at high temperatures excess of titanium that originates oxygen vacancies. The TEM images showed clearly the formation of TiO2 nanofibers (NF’s) that exhibit a homogeneous and continuous aspect without the presence of crystalline defects, whose surface morphology depends strongly on the annealing temperature. The crystalline phase transformation was studied by Raman spectroscopy, which revealed that annealed TiO2 NF’s showed a crystalline phase transformation from amorphous, pure anatase, anatase-rutile mixed, to pure rutile as the annealing temperature increased, which was corroborated by X-ray diffraction and high-resolution TEM. The average grain size, inside the NF´s, increased with the crystalline phase transformation from 10 to 24 nm for anatase-TiO2 and from 30 to 47 nm for rutile-TiO2, which were estimated by using the Scherrer-Debye equation. By absorbance measurements at room temperature the band gap energy (Eg) was obtained, which is ranged in 3.75-2.42 eV, caused by the amorphous → anatase → anatase-rutile mixed → rutile crystalline phase transformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-23

Citation:

Online since:

March 2022

Export:

Price:

* - Corresponding Author

[1] S. Riaz, S. Naseem. Controlled nanostructuring of TiO2 nanoparticles: a sol–gel approach. J. Sol-Gel Sci. Technol. 74(2015) 299–309.

DOI: 10.1007/s10971-014-3557-4

Google Scholar

[2] Kenry, C. T. Lim. Nanofiber technology: current status and emerging developments. Prog. Polym. Sci. 70 (2017) 1–17.

Google Scholar

[3] R. Hada, A. Amritphale, S. S. Amritphale, S. Dixit. A Novel Mixed Reverse Microemulsion Route for the Synthesis of Nanosized Titania Particles. The Open Mineral Processing Journal 3 (2010) 68-72.

DOI: 10.2174/1874841401003010068

Google Scholar

[4] D. A. H. Hanaor, C. C. Sorrell. Review of the anatase to rutile phase transformation. J. Mater. Sci. 46 (2011) 855–874.

DOI: 10.1007/s10853-010-5113-0

Google Scholar

[5] R. J. B. Peters, A. G. Oomen, G. van Bemmel, L. van Vliet, A. K. Undas, S. Munniks, R. L. A. W. Bleys, P. C. Tromp, W. Brand, M. van der Lee. Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology 14 (2020) 420-432.

DOI: 10.1080/17435390.2020.1718232

Google Scholar

[6] J. Z. Soo, L. C. Chai, B. C. Ang, B.H. Ong. Enhancing the Antibacterial Performance of Titanium Dioxide Nanofibers by Coating with Silver Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 6, 5743–5751.

DOI: 10.1021/acsanm.0c00925

Google Scholar

[7] I. K. Konstantinou, T. A. Albanis. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B 49 (2004) 1−14.

DOI: 10.1016/j.apcatb.2003.11.010

Google Scholar

[8] S. H. Othman, S. A. Rashid, T. I. M. Ghazi, N. Abdullah. Fe-Doped TiO2 Nanoparticles Produced via MOCVD: Synthesis, Characterization, and Photocatalytic Activity. J. Nanomater. 2011 (2011) 8 pages.

DOI: 10.1155/2011/571601

Google Scholar

[9] G. Odling, N. Robertson. Why is Anatase a Better Photocatalyst than Rutile? The Importance of Free Hydroxyl Radicals. ChemSusChem. 11 (2015) 1838-40.

DOI: 10.1002/cssc.201500298

Google Scholar

[10] J. Zhang, P. Zhou, J. Liub, J. Yu. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2 Chem. Chem. Phys. 16 (2014) 20382-20386.

DOI: 10.1039/c4cp02201g

Google Scholar

[11] R. Chandrasekar, L. Zhang, J. Y. Howe, N. E. Hedin, Y. Zhang, H. Fong. Fabrication and characterization of electrospun titania nanofibers. J. Mater. Sci. 44 (2009) 1198–1205.

DOI: 10.1007/s10853-008-3201-1

Google Scholar

[12] N. A. Díaz-Dávila, A. Sáenz-Galindo, A. O. Castañeda-Facio. TiO2 nanoparticles: A review. CienciAcierta 64 (2020) 1-13.

Google Scholar

[13] F. Parrino, L. Palmisano. Titanium Dioxide (TiO2) and Its Applications. 1st Edition. Series Editor Ghenadii Korotcenkov. Editorial Elsevier. Amsterdam. (2020).

Google Scholar

[14] S. M. Gupta, M. Tripathi. A review of TiO2 nanoparticles. Chinese Sci Bull. 56 (2011) 1639−1657.

Google Scholar

[15] J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9 (2018) 1050–1074.

DOI: 10.3762/bjnano.9.98

Google Scholar

[16] M. V. Someswararao, R. S. Dubey, P. S. V. Subbarao, Shyam Singh. Electrospinning process parameters dependent investigation of TiO2 nanofibers. Results Phys. 11 (2018) 223-231.

DOI: 10.1016/j.rinp.2018.08.054

Google Scholar

[17] Z. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna. A review on polymer nanofibers by electro-spinning applications in nanocomposites. Compos. Sci. Technol. 63 (2003) 2223-2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[18] S. Jian, J, Zhu, S. Jiang, S. Chen, H. Fang, Y. Song, G. Duan, Y. Zhang, H. Hou. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv. 8 (2018) 4794–4802.

DOI: 10.1039/c7ra13444d

Google Scholar

[19] J. Xue, T. Wu, Y. Dai, Y. Xia. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 119 (2019) 5298–5415.

DOI: 10.1021/acs.chemrev.8b00593

Google Scholar

[20] G, He, Y. Cai, Y. Zhao, X. Wang, C. Lai, M. Xi, Z. Zhu, H. Fong. Electrospun anatase-phase TiO2 nanofibers with different morphological structures and specific surface areas. J. Colloid Interface Sci 398 (2013) 103-111.

DOI: 10.1016/j.jcis.2013.02.009

Google Scholar

[21] V. Thavasi, G. Singh, S. Ramakrishna. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 1 (2008) 205–221.

DOI: 10.1039/b809074m

Google Scholar

[22] D. Li, Y. Xia. Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 3 (2003) 555-560.

DOI: 10.1021/nl034039o

Google Scholar

[23] O. Secundino-Sánchez, J. Díaz-Reyes, J. Águila- López, J. F. Sánchez-Ramírez. Crystalline phase transformation of electrospinning TiO2 nanofibres carried out by high temperature annealing. J. Mol. Struct. 1194 (2019) 163-170.

DOI: 10.1016/j.molstruc.2019.05.092

Google Scholar

[24] H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, G. H. Ma. Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl. Surf. Sci. 253 (2007) 7497-7500.

DOI: 10.1016/j.apsusc.2007.03.047

Google Scholar

[25] M. K. Singh, A. Agarwal, R. Gopal, R. K. Swarnkar, R. K. Kotnala. Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. J. Mater. Chem. 21 (2011) 11074-11079.

DOI: 10.1039/c1jm12320c

Google Scholar

[26] J. Díaz-Reyes, J. I. Contreras-Rascón, J. S. Arias-Cerón, J. F. Sánchez-Ramírez, M. Galván-Arellano, J. Martínez-Juárez, J. A. Balderas-López. Structural and optical characterisation of CdSe1-ySy. Mater. Sci. Semicond. Process. 37 (2015) 199-206.

DOI: 10.1016/j.mssp.2015.03.001

Google Scholar

[27] Q. Zhang, L. Gao, J. Guo. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl. Catal. B 26 (2000) 207-215.

DOI: 10.1016/s0926-3373(00)00122-3

Google Scholar

[28] M. E. Linares-Avilés, J. I. Contreras-Rascón, J. Díaz-Reyes, J. Martínez-Juárez, R. S. Castillo-Ojeda, M. Galván-Arellano, J. A. Balderas-López, M. Álvarez-Ramos. Characterization of CBD-CdS Doped with Some Rare Earths III (Eu3+,Ce3+) as Function of Synthesis Time. Mater. Res. 21 (2018) e20170626.

DOI: 10.1590/1980-5373-mr-2017-0626

Google Scholar

[29] A. Rivera-Márquez, M. Rubín-Falfán, R. Lozada-Morales, O. Portillo-Moreno, O. Zelaya-Angel, J. Luyo-Alvarado, M. Meléndez-Lira, L. Baños. Quantum Confinement and Crystalline Structure of CdSe Nanocrystalline Films. Phys. Stat. Sol. (a) 188 (2001) 1059–1064.

DOI: 10.1002/1521-396x(200112)188:3<1059::aid-pssa1059>3.0.co;2-5

Google Scholar

[30] Z. Wang, U. Helmersson, P.O. Käll. Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Films 405 (2002) 50–54.

DOI: 10.1016/s0040-6090(01)01767-9

Google Scholar

[31] A. Nakaruk, D. Ragazzon, C.C. Sorrell, Anatase–rutile transformation through high temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films 518 (2010) 3735–3742.

DOI: 10.1016/j.tsf.2009.10.109

Google Scholar

[32] C. Kuchi, G. S. Harish, P. S. Reddy. Effect of polymer concentration, needle diameter and annealing temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique. Ceram. Int. 44 (2018) 5266–5272.

DOI: 10.1016/j.ceramint.2017.12.138

Google Scholar

[33] O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, L. Kavan. Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16,17,18). Phys. Chem. Chem. Phys. 14 (2012) 14567–14572.

DOI: 10.1039/c2cp42763j

Google Scholar

[34] L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J. Phys. Chem. B 110 (2006) 17860–17865.

DOI: 10.1021/jp063148z

Google Scholar

[35] M. A. Hamid, I. A. Rahman. Preparation of titanium dioxide (TiO2) thin films by sol gel dip coating method. Malay. J. Chem. 5 (2003) 086–091.

Google Scholar

[36] D. Mardare, M. Tasca, M. Delibas, G. I. Rusu. On the structural properties and optical transmittance of TiO2 r. f. sputtered thin films. Appl. Surf. Sci. 156 (2000) 200–206.

DOI: 10.1016/s0169-4332(99)00508-5

Google Scholar

[37] H. H. Huang, C. C. Huang, P. C. Huang, C. F. Yang, C. Y. Hsu. Preparation of rutile and anatase phases titanium oxide film by RF sputtering. J. Nanosci. Nanotechnol. 8 (2008) 2659–2664.

DOI: 10.1166/jnn.2008.548

Google Scholar

[38] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, S. Tanemura. Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering. Appl. Surf. Sci. 212–213 (2003) 255–263.

DOI: 10.1016/s0169-4332(03)00106-5

Google Scholar

[39] C. C. Ting, S. Y. Chen, D. M. Liu. Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films. J. Appl. Phys. 88 (2000) 4628–4633.

DOI: 10.1063/1.1309039

Google Scholar

[40] H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy. Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75 (1994) 2042–(2047).

DOI: 10.1063/1.356306

Google Scholar

[41] S. Valencia, J. M. Marín, G. Restrepo. Study of the bandgap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J. 4 (2010) 9–14.

DOI: 10.2174/1874088x01004010009

Google Scholar