Biochar as a soil conditioner for common bean plants

Palavras-chave: liming; biocarbon; common bean; waste management; organic residue.

Resumo

Biochar is a carbon-rich material produced during organic waste pyrolysis. In this context, two experiments were performed to evaluate the effect of biochar produced from rice husks and cattle manure on soil fertility and common bean production, as well as to identify the optimal dose of cattle manure biochar to be applied. The first experiment (Experiment I) was conducted according to a completely randomized design (factorial scheme 2 × 2 × 2 + 1) with six replicates: two types of biochar (cattle manure biochar and rice husk biochar), with and without acidity correction [addition of calcium carbonate and magnesium carbonate (PA) in a proportion of 4:1 (Ca:Mg) to raise the soil base saturation to 60%], with or without the addition of 120 mg dm-3 of phosphorus (P) as ammonium phosphate, and a control treatment (without biochar, acidity correction, and P). Based on the results of Experiment I, a second experiment was conducted according to a completely randomized design, with five treatments (doses of biochar from cattle manure) and four replications. Rice husk biochar, as a conditioner of soil chemical properties, had less prominent effects than cattle manure biochar. Cattle manure biochar functioned as a corrective for soil acidity and a source of nutrients (mainly phosphorus). The dose corresponding to 5.46% of the soil volume led to the maximum grain production by common bean plants.

Downloads

Não há dados estatísticos.

Referências

Abbasi, M. K., & Anwar, A. A. (2015). Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion -greenhouse experiments. PLoS ONE, 10(6), 1-18. DOI: https://doi.org/10.1371/journal.pone.0131592

Almeida, J. B. de, Santos, L. S., Pandey, S. D., Nunes, C. F., Colen, F., Sampaio, R. A., Frazão, L. A., Pegoraro, R. F., & Fernandes, L. A. (2020). Mitigação da toxidez por alumínio e cádmio por biochar e seu potencial tóxico para o sorgo. Semina: Ciências Agrárias, 41(1), 95-108. DOI: https://doi.org/10.5433/1679-0359.2020v41n1p95

Alvarez, V. V. H., Novais de, R. F., Dias, L. E., & Oliveira, J. A. (2000). Determinação e uso do fósforo remanescente. Boletim Informativo da Sociedade Brasileira de Ciência do Solo, 25, 27-32.

Alves, B. S. Q., Zelaya, K. P. S., Colen, F., Frazão, L. A., Napoli, A., Parikh, S. J., & Fernandes, L. A. (2021). Effect of sewage sludge and sugarcane bagasse biochar on soil properties and sugar beet production. Pedosphere, 31(4), 572-582. DOI: https://doi.org/10.1016/S1002-0160(21)60003-6

ANDA. (2021). Estatísticas. São Paulo, SP: Associação Nacional para a Difusão de Adubos.

Cheng, C. H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72(6), 1598-1610. DOI: https://doi.org/10.1016/j.gca.2008.01.010

Di Lonardo, S., Vaccari, F. P., Baronti, S., Capuana, M., Bacci, L., Sabatini, F., ... Miglietta, F. (2013). Biochar successfully replaces activated charcoal for in vitro culture of two white poplar clones reducing ethylene concentration. Plant Growth Regulation, 69, 43-50. DOI: https://doi.org/10.1007/s10725-012-9745-8

Fachinetto, J. D., & Brisola, M. V. (2018). Evolução dos estudos sobre a produção de bovines de corte e a emissão de gases de efeito estufa decorrente dessa atividade na região central do Brasil. Desenvolvimento e Meio Ambiente, 45, 180-193. DOI: https://dx.doi.org/10.5380/dma.v45i0.47354

Farhangi-Abriz, S. F., & Torabian, S. (2018). Effect of biochar on growth and ion contents of bean plant under saline condition. Environmental Science and Pollution Research International, 25, 11556-11564. DOI: https://doi.org/10.1007/s11356-018-1446-z

Gwenzi, W., Muzava, M., Mapanda, F., & Tauro, T. P. (2016). Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe. Journal of Integrative Agriculture, 15(6), 1395-1406. DOI: https://doi.org/10.1016/S2095-3119(15)61154-6

He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252(Part A), 846-855. DOI: https://doi.org/10.1016/j.envpol.2019.05.151

Kern, D. C., Lima, H. P., Costa, J. A., Lima, H. V., Browne Ribeiro, A., Moraes, B. M., & Kämpf, N. (2017). Terras pretas: Approaches to formation processes in a new paradigm. Geoarchaeology, 32(6), 694-706. DOI: https://doi.org/10.1002/gea.21647

Kovacs, H., & Szemmelveisz, K. (2017). Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - A review. Chemosphere, 166, 8-20. DOI: https://doi.org/10.1016/j.chemosphere.2016.09.076

Liu, Q., Liu, B., Zhang, Y., Hu, T., Lin, Z., Liu, G., ... Xie, Z. (2019). Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Global Change Biology, 25(6), 2077-2093. DOI: https://doi.org/10.1111/gcb.14613

Nayal, F. S., Mammadov, A., & Ciliz, N. (2016). Environmental assessment of energy generation from agricultural and farm waste through anaerobic digestion. Journal of Environmental Management, 184(Part 2), 389-399. DOI: https://doi.org/10.1016/j.jenvman.2016.09.058

Qian, L., Chen, B., & Hu, D. (2013). Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environmental Science and Technology, 47(6), 2737-2745. DOI: https://doi.org/10.1021/es3047872

Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, 271-284. DOI: https://doi.org/10.1007/s00374-011-0624-7

Silva, L. C. R., Corrêa, R. S., Wright, J. L., Bomfim, B., Hendricks, L., Gavin, ... Santos, R. V. (2021). A new hypothesis for the origin of Amazonian Dark Earths. Nature Communications, 12, 1-11. DOI: https://doi.org/10.1038/s41467-020-20184-2

Steenari, B. M., Karlsson, L. G., & Lindqvist, O. (1999). Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass and Bioenergy, 16(2), 119-136. DOI: https://doi.org/10.1016/S0961-9534(98)00070-1

Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116, 653-659. DOI: https://doi.org/10.1016/j.jbiosc.2013.05.035

Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, G. W. (2017). Manual de métodos de análise de solo (3. ed.). Brasília, DF: Embrapa Informação Tecnológica.

Torres, W. G. A., Colen, F., Pandey, S. D., Frazão, L. A., Sampaio, R. A., & Fernandes, L. A. (2020). Phosphorus availability in soil amended with biochar from rice rusk and cattle manure and cultivated with common bean. Ciência e Agrotecnologia, 44, 1-10. DOI: https://doi.org/10.1590/1413-7054202044014620

United States Environmental Protection Agency [USEPA]. (1996). Method 3050B: Acid digestion of sediments, sludges, and soils (Revision 2 3051). Washington, DC: Environmental Protection Agency.

Viger, M., Hancock, R. D., Miglietta, F., & Taylor, G. (2015). More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 7(4), 658-672. DOI: https://doi.org/10.1111/gcbb.12182

Yao, L., Yu, X., Huang, L., Zhang, X., Wang, D., Zhao, X., ... Guo, Y. (2019). Responses of Phaseolus calcaltus to lime and biochar application in an acid soil. PeerJ, 7, 1-26. DOI: https://doi.org/10.7717/peerj.6346

Publicado
2023-08-22
Como Citar
Torres, W. G. A., Colen, F., Megda, M. X. V., Frazão, L. A., Prates, F. B. de S., Sampaio, R. A., & Fernandes, L. A. (2023). Biochar as a soil conditioner for common bean plants. Acta Scientiarum. Agronomy, 45(1), e60644. https://doi.org/10.4025/actasciagron.v45i1.60644
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus