Research article Special Issues

Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions

  • Received: 05 June 2022 Revised: 24 July 2022 Accepted: 27 July 2022 Published: 10 August 2022
  • MSC : Primary 46C05, Secondary 47A05

  • In this work, we study existence and uniqueness of solutions for multi-point boundary value problemS of nonlinear fractional differential equations with two fractional derivatives. By using a variety of fixed point theorems, such as Banach's fixed point theorem, Leray-Schauder's nonlinear alternative and Leray-Schauder's degree theory, the existence of solutions is obtained. At the end, some illustrative examples are discussed.

    Citation: Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini. Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions[J]. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998

    Related Papers:

  • In this work, we study existence and uniqueness of solutions for multi-point boundary value problemS of nonlinear fractional differential equations with two fractional derivatives. By using a variety of fixed point theorems, such as Banach's fixed point theorem, Leray-Schauder's nonlinear alternative and Leray-Schauder's degree theory, the existence of solutions is obtained. At the end, some illustrative examples are discussed.



    加载中


    [1] A. Alsaedi, S. K. Ntouyas, B. Ahmad, New existence results for fractional integrodifferential equations with nonlocal integral boundary conditions, Abstr. Appl. Anal., 2015 (2015), 205452. https://doi.org/10.1155/2015/205452 doi: 10.1155/2015/205452
    [2] B. Ahmad, J. J. Nietoa, A. Alsaedi, H. Al-Hutamia, Boundary value problems of nonlinear fractional $q$-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions, Filomat, 28 (2014), 1719–1736. https://doi.org/10.2298/FIL1408719A doi: 10.2298/FIL1408719A
    [3] B. Ahmad, J. J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equ., 2010 (2010), 649486. https://doi.org/10.1155/2010/649486 doi: 10.1155/2010/649486
    [4] Z. Bai, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [5] S. Belarbi, Z. Dahmani, Some applications of Banach fixed point and Leray Schauder theorems for fractional boundary value problems, J. Dyn. Syst. Geom. The., 11 (2013), 53–79. https://doi.org/10.1080/1726037X.2013.838448 doi: 10.1080/1726037X.2013.838448
    [6] C. Thaiprayoon, S. K. Ntouyas, J. Tariboon, On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation, Adv. Differ. Equ., 2015 (2015), 374. https://doi.org/10.1186/s13662-015-0712-3 doi: 10.1186/s13662-015-0712-3
    [7] Z. Cui, P. Yu, Z. Mao, Existence of solutions for nonlocal boundary value problems of nonlinear fractional differential equations, Adv. Dyn. Syst. Appl., 7 (2012), 31–40.
    [8] Z. Dahmani, L. Tabharit, Fractional order differential equations involving Caputo derivative, Theory Appl. Math. Comput. Sci., 4 (2014), 40–55.
    [9] L. Gaul, P. Klein, S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Pr., 5 (1991), 81–88. https://doi.org/10.1016/0888-3270(91)90016-X doi: 10.1016/0888-3270(91)90016-X
    [10] W. G. Glöckle, T. F. Nonnenmacher, A fractional calculus approach to self-semilar protein dynamics, Biophys. J., 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8 doi: 10.1016/S0006-3495(95)80157-8
    [11] M. Houas, Z. Dahmani, New results for a Caputo boundary value problem, Amer. J. Comput. Appl. Math., 3 (2013), 143–161. https://doi.org/10.5923/j.ajcam.20130303.01 doi: 10.5923/j.ajcam.20130303.01
    [12] M. Houas, Z. Dahmani, M. Benbachir, New results for a boundary value problem for differential equations of arbitrary order, Int. J. Mod. Math. Sci., 7 (2013), 195–211.
    [13] M. Houas, Z. Dahmani, On existence of solutions for fractional differential equations with nonlocal multi-point boundary conditions, Lobachevskii J. Math., 37 (2016), 120–127. https://doi.org/10.1134/S1995080216020050 doi: 10.1134/S1995080216020050
    [14] M. Houas, M. Benbachir, Existence solutions for four point boundary value problems for fractional differential equations, Pure Appl. Math. Lett., 2015 (2015), 37–49.
    [15] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, In: A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vol. 378, International Centre for Mechanical Sciences, New York: Springer-Verlag, 1997. https://doi.org/10.1007/978-3-7091-2664-6_7
    [16] R. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180–7186. https://doi.org/10.1063/1.470346 doi: 10.1063/1.470346
    [17] N. Nyamoradi, T. Bashiri, S. M. Vaezpour, D. Baleanu, Uniqueness and existence of positive solutions for singular fractional differential equations, Electron. J. Differ. Equ., 130 (2014), 1–13.
    [18] H. Scher, E. W. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12 (1975), 2455–2477. https://doi.org/10.1103/PhysRevB.12.2455 doi: 10.1103/PhysRevB.12.2455
    [19] M. Li, Y. Liu, Existence and uniqueness of positive solutions for a coupled system of nonlinear fractional differential equations, Open J. Appl. Sci., 3 (2013), 53–61. https://doi.org/10.4236/ojapps.2013.31B1011 doi: 10.4236/ojapps.2013.31B1011
    [20] G. T. Wang, B. Ahmad, L. Zhang, A coupled system of nonlinear fractional differential equations with multipoint fractional boundary conditions on an unbounded domain, Abstr. Appl. Anal., 2012 (2012), 248709. https://doi.org/10.1155/2012/248709 doi: 10.1155/2012/248709
    [21] J. Tariboon, S. K. Ntouyas, C. Thaiprayoon, Nonlinear Langevin equation of Hadamard-Caputo type fractional derivatives with nonlocal fractional integral conditions, Adv. Math. Phys., 2014 (2014), 372749. https://doi.org/10.1155/2014/372749 doi: 10.1155/2014/372749
    [22] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [23] G. Wang, W. Liu, C. Ren, Existence of solutions for multi-point nonlinear differential equations of fractional orders with integral boundary conditions, Electron. J. Differ. Equ., 2012 (2012), 1–10.
    [24] Y. H. Zhang, Z. B. Bai, Existence of solutions for nonlinear fractional three-point boundary value problems at resonance, J. Appl. Math. Comput., 36 (2011), 417–440. https://doi.org/10.1007/s12190-010-0411-x doi: 10.1007/s12190-010-0411-x
    [25] W. Yukunthorn, S. K. Ntouyas, J. Tariboon, Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions, Adv. Differ. Equ., 2014 (2014), 315. https://doi.org/10.1186/1687-1847-2014-315 doi: 10.1186/1687-1847-2014-315
    [26] A. Benali, H. Bouzid, M. Haouas, Existence of solutions for Caputo fractional $q$-differential equations, Asia Math., 5 (2021), 143–157. https://doi.org/10.5281/zenodo.4730073 doi: 10.5281/zenodo.4730073
    [27] H. Annaby, Z. Mansour, q-fractional calculus and equations, Lecture Notes in Mathematics, Vol. 2056. Berlin: Springer, 2012.
    [28] R. P. Agarwal, Certain fractional $q$-integrals and $q$-derivatives, Math. Proc. Cambridge Philos. Soc., 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060
    [29] P. Rajkovic, S. Marinkovic, M. Stankovic, On $q$-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359–373.
    [30] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [31] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [32] G. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives: Theory and applications, Amsterdam: Gordon and Breach, 1993.
    [33] A. Granas, J. Dugundji, Fixed Point Theory, Springer Verlag, 2003.
    [34] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol. 204, 2006.
    [35] Z. Baitiche, C. Derbazi, J. Alzabut, M. E. Samei, M. K. A. Kaabar, Z. Siri, Monotone iterative method for langevin equation in terms of $\psi$-Caputo fractional derivative and nonlinear boundary conditions, Fractal Fract., 5 (2021), 81. https://doi.org/10.3390/fractalfract5030081 doi: 10.3390/fractalfract5030081
    [36] J. Alzabut, A. G. M. Selvam, R. A. El-Nabulsi, V. Dhakshinamoorthy, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473
    [37] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. Chu, On multi-step methods for singular fractional $q$-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [38] A. Boutiara, M. Benbachir, J. Alzabut, M. E. Samei, Monotone iterative and upper-lower solutions techniques for solving nonlinear $\psi$-Caputo fractional boundary value problem, Fractal Fract., 5 (2021), 194. https://doi.org/10.3390/fractalfract5040194 doi: 10.3390/fractalfract5040194
    [39] J. Alzabut, B. Mohammadaliee, M. E. Samei, Solutions of two fractional $q$-integro-differential equations under sum and integral boundary value conditions on a time scale, Adv. Differ. Equ., 2020 (2020), 304. https://doi.org/10.1186/s13662-020-02766-y doi: 10.1186/s13662-020-02766-y
    [40] H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simulat., 197 (2022), 341357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022
    [41] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos Solitons Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [42] C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. https://doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1198) PDF downloads(112) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog