Research article

Zavadskij modules over cluster-tilted algebras of type $ \mathbb{A} $


  • Received: 23 May 2022 Revised: 14 July 2022 Accepted: 17 July 2022 Published: 21 July 2022
  • Zavadskij modules are uniserial tame modules. They arose from interactions between the poset representation theory and the classification of general orders. The main problem is to characterize Zavadskij modules over a finite-dimensional algebra $ A $. In this setting, we prove that the indecomposable uniserial $ A $-modules with a mast of multiplicity one in each vertex are Zavadskij modules. Since the Zavadskij property carries over to direct summands, but it is not invariant under the formation of direct sums, we give a criterion to determine when the direct sum of indecomposable Zavadskij modules is again a Zavadskij module. In addition, we use the triangulations of the $ n+3 $-gon associated with the cluster-tilted algebra of type $ \mathbb{A}_{n} $ to give a formula for the number of indecomposable Zavadskij modules over any cluster-tilted algebra of type $ \mathbb{A}_{n} $. In this case, the formula gives the dimension of the cluster-tilted algebra. As an application, we discuss some integer sequences in the OEIS (The On-Line Encyclopedia of Integer Sequences) that allow us to enumerate indecomposable Zavadskij modules.

    Citation: Agustín Moreno Cañadas, Robinson-Julian Serna, Isaías David Marín Gaviria. Zavadskij modules over cluster-tilted algebras of type $ \mathbb{A} $[J]. Electronic Research Archive, 2022, 30(9): 3435-3451. doi: 10.3934/era.2022175

    Related Papers:

  • Zavadskij modules are uniserial tame modules. They arose from interactions between the poset representation theory and the classification of general orders. The main problem is to characterize Zavadskij modules over a finite-dimensional algebra $ A $. In this setting, we prove that the indecomposable uniserial $ A $-modules with a mast of multiplicity one in each vertex are Zavadskij modules. Since the Zavadskij property carries over to direct summands, but it is not invariant under the formation of direct sums, we give a criterion to determine when the direct sum of indecomposable Zavadskij modules is again a Zavadskij module. In addition, we use the triangulations of the $ n+3 $-gon associated with the cluster-tilted algebra of type $ \mathbb{A}_{n} $ to give a formula for the number of indecomposable Zavadskij modules over any cluster-tilted algebra of type $ \mathbb{A}_{n} $. In this case, the formula gives the dimension of the cluster-tilted algebra. As an application, we discuss some integer sequences in the OEIS (The On-Line Encyclopedia of Integer Sequences) that allow us to enumerate indecomposable Zavadskij modules.



    加载中


    [1] W. Rump, Two-point differentiation for general orders, J. Pure Appl. Algebra, 153 (2000), 171–190. https://doi.org/10.1016/S0022-4049(99)00085-7 doi: 10.1016/S0022-4049(99)00085-7
    [2] A. G. Zavadskij, Differentiation with respect to a pair of points, Matrix probl., (1977), 115–121.
    [3] D. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, Springer Science & Business Media, 2012.
    [4] W. Rump, Differentiation for orders and Artinian rings, Algebras Represent. Theory, 7 (2004), 395–417. https://doi.org/10.1023/B:ALGE.0000042182.98997.7c doi: 10.1023/B:ALGE.0000042182.98997.7c
    [5] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, Gordon and Breach Science Publishers, Montreux, 1992.
    [6] A. G. Zavadskiĭ, V. V. Kiričenko, Semimaximal rings of finite type, Mat. Sb. (N.S.), 103 (1977), 323–345.
    [7] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math., 204 (2006), 572–618. https://doi.org/10.1016/j.aim.2005.06.003 doi: 10.1016/j.aim.2005.06.003
    [8] P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters ($A_n$ case), Trans. Am. Math. Soc., 358 (2006), 1347–1364. https://doi.org/10.1090/S0002-9947-05-03753-0 doi: 10.1090/S0002-9947-05-03753-0
    [9] A. B. Buan, R. J. Marsh, I. Reiten, Cluster-tilted algebras of finite representation type, J. Algebra, 306 (2006), 412–431. https://doi.org/10.1016/j.jalgebra.2006.08.005 doi: 10.1016/j.jalgebra.2006.08.005
    [10] A. B. Buan, D. F. Vatne, Derived equivalence classification for cluster-tilted algebras of type $A_n$, J. Algebra, 319 (2008), 2723–2738. https://doi.org/10.1016/j.jalgebra.2008.01.007 doi: 10.1016/j.jalgebra.2008.01.007
    [11] H. A. Torkildsen, Counting cluster-tilted algebras of type $A_n$, Int. Electron. J. Algebra, 4 (2008), 149–158.
    [12] S. Nowak, D. Simson, Locally Dynkin quivers and hereditary coalgebras whose left comodules are direct sums of finite dimensional comodules, Comm. Algebra, 30 (2002), 455–476. https://doi.org/10.1081/AGB-120006503 doi: 10.1081/AGB-120006503
    [13] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org, 1964.
    [14] I. Assem, D. Simson, A. Skowroński, Elements of the Representation Theory of Associative Algebras, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006. https://doi.org/10.1017/CBO9780511614309
    [15] A. B. Buan, H. A. Torkildsen, The number of elements in the mutation class of a quiver of type $D_n$, Electron. J. Combin., 16 (2009), 23. https://doi.org/10.37236/138 doi: 10.37236/138
    [16] J. Bastian, T. Holm, S. Ladkani, Towards derived equivalence classification of the cluster-tilted algebras of Dynkin type $D$, J. Algebra, 410 (2014), 277–332. https://doi.org/10.1016/j.jalgebra.2014.03.034 doi: 10.1016/j.jalgebra.2014.03.034
    [17] I. Assem, S. Trepode, Homological methods, representation theory, and cluster algebras, in Papers Based on Six Mini-Courses Delivered at the 2016 CIMPA School Held at the Universidad Nacional de Mar del Plata, Mar del Plata (eds. Ibrahim Assem and Sonia Trepode) Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-74585-5
    [18] A. Boldt, A. Mojiri, On uniserial modules in the Auslander-Reiten quiver, J. Algebra, 319 (2008), 1825–1850. https://doi.org/10.1016/j.jalgebra.2007.11.026 doi: 10.1016/j.jalgebra.2007.11.026
    [19] B. Huisgen-Zimmermann, The geometry of uniserial representations of finite-dimensional algebra. I, J. Pure Appl. Algebra, 127 (1998), 39–72. https://doi.org/10.1016/S0022-4049(96)00184-3 doi: 10.1016/S0022-4049(96)00184-3
    [20] A. Boldt, Two Aspects of Finite-Dimensional Algebras: Uniserial Modules and Coxeter Polynomials, ProQuest LLC, Ann Arbor, MI, University of California, PhD Thesis, 1996.
    [21] R. Schiffler, R. J. Serna, A geometric realization of socle-projective categories for posets of type $\Bbb{A}$, J. Pure Appl. Algebra, 224 (2020), 23. https://doi.org/10.1016/j.jpaa.2020.106436 doi: 10.1016/j.jpaa.2020.106436
    [22] P. Fahr, C. M. Ringel, A partition formula for Fibonacci numbers, J. Integer Seq., 11 (2008), 9.
    [23] P. Fahr, C. M. Ringel, Categorification of the Fibonacci numbers using representations of quivers, J. Integer Seq., 15 (2012), 12. https://doi.org/10.48550/arXiv.1107.1858 doi: 10.48550/arXiv.1107.1858
    [24] A. M. Cañadas, P. F. F. Espinosa, I. D. M. Gaviria, Categorification of some integer sequences via Kronecker modules, JP J. Algebra, Number Theory Appl., 38 (2016), 339–347. http://dx.doi.org/10.17654/NT038040339 doi: 10.17654/NT038040339
    [25] A. M. Cañadas, I. D. M. Gaviria, H. Giraldo, Representation of equipped posets to generate Delannoy numbers, Far East J. Math. Sci., 8 (2017), 1677–1695. https://doi.org/10.17654/MS102081677 doi: 10.17654/MS102081677
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(859) PDF downloads(125) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog