Research article Special Issues

A new class of multiple nonlocal problems with two parameters and variable-order fractional $ p(\cdot) $-Laplacian

  • Received: 29 June 2023 Revised: 10 August 2023 Accepted: 21 August 2023 Published: 13 September 2023
  • 35J60, 35J20

  • In the present manuscript, we focus on a novel tri-nonlocal Kirchhoff problem, which involves the $ p(x) $-fractional Laplacian equations of variable order. The problem is stated as follows:

    $ \begin{eqnarray*} \left\{ \begin{array}{ll} M\Big(\sigma_{p(x, y)}(u)\Big)(-\Delta)^{s(\cdot)}_{p(\cdot)}u(x) = \lambda |u|^{q(x)-2}u\left(\int_{\Omega}\frac{1}{q(x)} |u|^{q(x)}dx \right)^{k_1}+\beta|u|^{r(x)-2}u\left(\int_{\Omega}\frac{1}{r(x)} |u|^{r(x)}dx \right)^{k_2} \quad \mbox{in }\Omega, \\ \ u = 0 \quad \mbox{on }\partial\Omega, \end{array} \right. \end{eqnarray*} $

    where the nonlocal term is defined as

    $ \sigma_{p(x, y)}(u) = \int_{\Omega\times \Omega}\frac{1}{p(x, y)}\frac{|u(x)-u(y)|^{p(x, y)}}{|x-y|^{N+s(x, y)p(x, y)}} \, dx\, dy. $

    Here, $ \Omega\subset\mathbb{R}^{N} $ represents a bounded smooth domain with at least $ N\geq2 $. The function $ M(s) $ is given by $ M(s) = a - bs^\gamma $, where $ a\geq 0 $, $ b > 0 $, and $ \gamma > 0 $. The parameters $ k_1 $, $ k_2 $, $ \lambda $ and $ \beta $ are real parameters, while the variables $ p(x) $, $ s(\cdot) $, $ q(x) $, and $ r(x) $ are continuous and can change with respect to $ x $. To tackle this problem, we employ some new methods and variational approaches along with two specific methods, namely the Fountain theorem and the symmetric Mountain Pass theorem. By utilizing these techniques, we establish the existence and multiplicity of solutions for this problem separately in two distinct cases: when $ a > 0 $ and when $ a = 0 $. To the best of our knowledge, these results are the first contributions to research on the variable-order $ p(x) $-fractional Laplacian operator.

    Citation: Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui. A new class of multiple nonlocal problems with two parameters and variable-order fractional $ p(\cdot) $-Laplacian[J]. Communications in Analysis and Mechanics, 2023, 15(3): 551-574. doi: 10.3934/cam.2023027

    Related Papers:

  • In the present manuscript, we focus on a novel tri-nonlocal Kirchhoff problem, which involves the $ p(x) $-fractional Laplacian equations of variable order. The problem is stated as follows:

    $ \begin{eqnarray*} \left\{ \begin{array}{ll} M\Big(\sigma_{p(x, y)}(u)\Big)(-\Delta)^{s(\cdot)}_{p(\cdot)}u(x) = \lambda |u|^{q(x)-2}u\left(\int_{\Omega}\frac{1}{q(x)} |u|^{q(x)}dx \right)^{k_1}+\beta|u|^{r(x)-2}u\left(\int_{\Omega}\frac{1}{r(x)} |u|^{r(x)}dx \right)^{k_2} \quad \mbox{in }\Omega, \\ \ u = 0 \quad \mbox{on }\partial\Omega, \end{array} \right. \end{eqnarray*} $

    where the nonlocal term is defined as

    $ \sigma_{p(x, y)}(u) = \int_{\Omega\times \Omega}\frac{1}{p(x, y)}\frac{|u(x)-u(y)|^{p(x, y)}}{|x-y|^{N+s(x, y)p(x, y)}} \, dx\, dy. $

    Here, $ \Omega\subset\mathbb{R}^{N} $ represents a bounded smooth domain with at least $ N\geq2 $. The function $ M(s) $ is given by $ M(s) = a - bs^\gamma $, where $ a\geq 0 $, $ b > 0 $, and $ \gamma > 0 $. The parameters $ k_1 $, $ k_2 $, $ \lambda $ and $ \beta $ are real parameters, while the variables $ p(x) $, $ s(\cdot) $, $ q(x) $, and $ r(x) $ are continuous and can change with respect to $ x $. To tackle this problem, we employ some new methods and variational approaches along with two specific methods, namely the Fountain theorem and the symmetric Mountain Pass theorem. By utilizing these techniques, we establish the existence and multiplicity of solutions for this problem separately in two distinct cases: when $ a > 0 $ and when $ a = 0 $. To the best of our knowledge, these results are the first contributions to research on the variable-order $ p(x) $-fractional Laplacian operator.



    加载中


    [1] L. Diening, P. Harjulehto, P. Hästö, M. Ružicka, Lebesgue and Sobolev spaces with variable exponents, Springer-Verlag, Heidelberg, (2011). https://doi.org/10.1007/978-3-642-18363-8
    [2] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
    [3] J. Giacomoni, S. Tiwari, G. Warnault, Quasilinear parabolic problem with $p(x)$-Laplacian: existence, uniqueness of weak solutions and stabilization, preprint, arXiv: 1510.00234.
    [4] F. J. S. Corrêa, A. C. dos Reis Costa, On a bi-nonlocal $p(x)$-Kirchhoff equation via Krasnoselskii's genus, Math. Methods Appl. Sci., 38 (2014), 87–93. https://doi.org/10.1002/mma.3051 doi: 10.1002/mma.3051
    [5] A. Harrabi, M. K. Hamdani, A. Fiscella, Existence and multiplicity of solutions for $m-$polyharmonic Kirchhoff problems without Ambrosetti-Rabinowitz conditions, Complex. Var. Elliptic, (2023), 1–17. https://doi.org/10.1080/17476933.2023.2250984 doi: 10.1080/17476933.2023.2250984
    [6] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovš, Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Anal., 190 (2020), 111598. https://doi.org/10.1016/j.na.2019.111598 doi: 10.1016/j.na.2019.111598
    [7] M. K. Hamdani, N. T. Chung, D. D. Repovš, New class of sixth-order nonhomogeneous $p(x)$-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal., 10 (2021), 1117–1131. https://doi.org/10.1515/anona-2020-0172 doi: 10.1515/anona-2020-0172
    [8] M. K. Hamdani, L. Mbarki, M. Allaoui, O. Darhouche, D. D. Repovš, Existence and multiplicity of solutions involving the $p(x)-$Laplacian equations: On the effect of two nonlocal terms, preprint, arXiv: 2206.08066.
    [9] F. Jaafari, A. Ayoujil, M. Berrajaa, On a bi-nonlocal fourth order elliptic problem, Proyecciones (Antofagasta), 40 (2021), 239–253. https://doi.org/10.22199/issn.0717-6279-2021-01-0015 doi: 10.22199/issn.0717-6279-2021-01-0015
    [10] L. Mbarki, The Nehari Manifold Approach Involving a Singular $p(x)-$Biharmonic Problem with Navier Boundary Conditions, Acta Appl. Math., 182 (2022), 3. https://doi.org/10.1007/s10440-022-00538-2 doi: 10.1007/s10440-022-00538-2
    [11] N. C. Eddine, P. D. Nguyen, M. A. Ragusa, Existence and multiplicity of solutions for a class of critical anisotropic elliptic equations of Schrodinger-Kirchhoff-type, Math. Method. Appl. Sci., (2023). https://doi.org/10.1002/mma.94742 doi: 10.1002/mma.94742
    [12] N. C. Eddine, A. Ouannasser, Multiple solutions for nonlinear generalized-Kirchhoff type potential in unbounded domains, Filomat, 37 (2023), 4317–4334.
    [13] A. Matallah, H. Benchira, M. E. O. El Mokhtar, Existence of solutions for p-Kirchhoff problem of Brezis-Nirenberg type with singular terms, J. Funct. Space., 2022. https://doi.org/10.1155/2022/7474777 doi: 10.1155/2022/7474777
    [14] U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Electron. J. Qual. Theory Differ. Equ., 76 (2017), 1–10. https://doi.org/10.14232/ejqtde.2017.1.76 doi: 10.14232/ejqtde.2017.1.76
    [15] M. Xiang, B. Zhang, D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190–204. https://doi.org/10.1016/j.na.2018.10.006 doi: 10.1016/j.na.2018.10.006
    [16] M. Allaoui, M. K. Hamdani, L. Mbarki, A degenerate Kirchhoff-type problem involving variable $s(\cdot)$-order fractional $p(\cdot)$-Laplacian with weights, preprint, arXiv: 2308.08007.
    [17] Y. Guo, G. Ye, Existence and uniqueness of weak solutions to variable-order fractional Laplacian equations with variable exponents, J. Funct. Spaces, 2021 (2021), 1–7. https://doi.org/10.1155/2021/6686213 doi: 10.1155/2021/6686213
    [18] Y. Wu, Z. Qiao, M. K. Hamdani, B. Kou, L. Yang, A class of variable-order fractional $p(.)$-Kirchhoff-type systems, J. Funct. Spaces, 2021 (2021), 1–6.
    [19] J. Zuo, L. Yang, S. Liang, A variable-order fractional $p((\cdot)$-Kirchhoff type problem in $\mathbb{R}^{N}$, Math. Methods Appl. Sci., 44 (2021), 3872–3889. https://doi.org/10.1002/mma.6995 doi: 10.1002/mma.6995
    [20] J. Zuo, A. Fiscella, A. Bahrouni, Existence and multiplicity results for $p((\cdot)$ and $q((\cdot)$ fractional Choquard problems with variable order, Complex Var. Elliptic Equ., 67 (2022), 209–229.
    [21] R. Biswas, S. Tiwari, Nehari manifold approach for fractional $p(.)$-Laplacian system involving concave-convex nonlinearities, Electron. J. Differential Equ., 2020 (2020), 1–29.
    [22] R. Biswas, S. Tiwari, On a class of Kirchhoff-Choquard equations involving variable-order fractional $p(\cdot)$-Laplacian and without Ambrosetti-Rabinowitz type condition, Topol. Methods Nonlinear Anal., 58 (2021), 403–439. https://doi.org/10.12775/TMNA.2020.072 doi: 10.12775/TMNA.2020.072
    [23] E. Azroul, A. Benkirane, M. Sraiti, Eigenvalue type problem in $s(\cdot, \cdot)$-fractional Musielak-Sobolev spaces, arXiv: submit/4673791.
    [24] D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl., 13 (2015), 645–661. https://doi.org/10.1142/S0219530514500420 doi: 10.1142/S0219530514500420
    [25] A. Bahrouni, V. D. Rǎdulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 379–389. https://doi.org/10.3934/dcdss.2018021 doi: 10.3934/dcdss.2018021
    [26] R. Biswas, S. Tiwari, Variable order nonlocal Choquard problem with variable exponents, Complex Var. Elliptic Equ., (2020), 1–23. https://doi.org/10.1080/17476933.2020.1751136 doi: 10.1080/17476933.2020.1751136
    [27] E. Azroul, A. Benkirane, M. Shimi, M. Srati, On a class of fractional $p(x)$-Kirchhoff type, Appl. Anal., 2019. https://doi.org/10.1080/00036811.2019.1603372 doi: 10.1080/00036811.2019.1603372
    [28] J. Zuo, T. An, A. Fiscella, A critical Kirchhoff-type problem driven by a $p(\cdot)$-fractional Laplace operator with variable $s(\cdot)$-order, Math. Methods Appl. Sci., 43 (2020), 7951–7965.
    [29] M. Willem, Minimax theorems, Birkh"{a}user, Boston, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [30] M. K. Hamdani, J. Zuo, N. T. Chung, D. D. Repovš, Multiplicity of solutions for a class of fractional $p(x, \cdot)$-Kirchhoff-type problems without the Ambrosett-Rabinowitz condition, Bound. Value Probl., 2020 (2020), 150. https://doi.org/10.1186/s13661-020-01447-9 doi: 10.1186/s13661-020-01447-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(823) PDF downloads(96) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog