Response of Sorghum vulgare L. Cultivars to Gamma Irradiation, a Preliminary Approach

Authors

  • Ishtiaq Ahmad Govt. Degree College Tangi, Charsadda, Pakistan
  • Izhar Ahmad Department of Botany, Islamia College Peshawar, Pakistan.
  • Zahir Muhammad Department of Botany, University of Peshawar, Pakistan.
  • Barkat Ullah Department of Botany, Islamia College Peshawar, Pakistan.

DOI:

https://doi.org/10.38211/joarps.2022.3.1.26

Abstract

Seeds of four Sorghum vulgare L. cultivars (Asian, Indian, Mycho, Summer graze) exposed to various doses of gamma irradiation (15 krad, 20 krad, 25 krad, 30 krad) were critically examined for percent emergence, plumule & radical growth, fresh & dry weight and moisture contents. Irradiation doses were instrumental in creating significant variability for all traits except percent emergence, indicating that Sorghum vulgare L. cultivars did not perform uniformly across different gamma rays treatments. Cultivars varied significantly (P < 0.05) for all characters. Similarly, doses × cultivars effects were highly significant for radical growth, percent emergence, biomass as well as moisture contents, indicating greater instability of performance for mentioned characters across different irradiation treatments. Mutagenic treatments shifted mean values towards negative direction for almost all traits except moisture contents. Mutagenic effectiveness was found to be dependent upon dose and genotype concerned. The present study categorically showed that the applied doses of gamma irradiation were unable to enhance percent emergence and seedling growth. Inter cultivar genetic variations were observed among the cultivars.

Downloads

Download data is not yet available.

References

References

Ahloowalia, B.S., Maluszynski, M. & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica, 135: 187–204. DOI: https://doi.org/10.1023/B:EUPH.0000014914.85465.4f

Akshatha & Chandrashekar, K.R. (2013). Effect of gamma irradiation on germination growth and biochemical parameters of Pterocarpus santalinus, an endangered species of Eastern Ghats. Europe Journal of Experimental Biology, 3: 266–270.

Akshatha, Chandrashekar, K.R., Somashekarappa, H.M. & Souframanien, J. (2013). Effect of gamma irradiation on germination, growth, and biochemical parameters of Terminalia arjuna Roxb. Radiation Protection and Environment, 36(1): 38–44. DOI: https://doi.org/10.4103/0972-0464.121826

Al-Rumaih, M.M. & Al-Rumaih, M.M. (2008). Influence of ionizing radiation on antioxidant enzymes in three species of Trigonella. Am. J. Environ. Sci., 4: 151–156 DOI: https://doi.org/10.3844/ajessp.2008.151.156

Ambavane, A. R., Sawardekar, S. V., Sawantdesai, S. A., & Gokhale, N. B. (2015). Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). Journal of Radiation Research and Applied Sciences, 8(1), 120-125. DOI: https://doi.org/10.1016/j.jrras.2014.12.004

Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B. & Majdabadi, A. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak. J. Bot., 42(4): 2281-2290.

Chaudhuri, S.K. (2002). A simple and reliable method to detect gamma-irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test. Radiat. Phys. Chem., 64: 131–136. DOI: https://doi.org/10.1016/S0969-806X(01)00467-4

Cheema, A.A. & Atta, B.M. (2003). Radiosensitivity studies in basmati rice. Pak. J. Bot., 35(2): 197-207.

Delastra, N.M., Astuti, A., Suwignyo, B., Muhlisin & Umami, N. (2021). Gamma radiation effect on growth, production and lignin content of Sorghum sudanense at different harvest ages. Buletin Peternakan, 45(3): 183-188. DOI: https://doi.org/10.21059/buletinpeternak.v45i3.62627

Dubey, A.K., Yadav, J. R. & Singh, B. (2007). “Studies on induced mutations by gamma irradiation in okra (Abelmoschus esculentus (L.) Monch,” 7(1/2): 46–48.

El-Sherif, F., Khattab, S., Ghoname, E., Salem, N. & Radwan, K. (2011). Effect of gamma irradiation on enhancement of some economic traits and molecular changes in Hibiscus Sabdariffa L. Life Science Journal, 8(3): 220-229.

Hanafy, S.R. & Akladious, A.S. (2018). Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants. Journal of Genetic Engineering and Biotechnology, 16(2): 683-692. DOI: https://doi.org/10.1016/j.jgeb.2018.02.012

Hegazi, A. Z. & Hamideldin, N. (2010). “The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes,” Journal of Horticulture and Forestry, 2(3): 038–051.

Hussain, F. (1989). Field and laboratory manual of plant ecology. N.A.H.E., University grand commission, Islam Abad.

Irfaq, M. & Nawab, K. (2001). Effect of gamma irradiation on some morphological characteristics on three wheat (Triticum aestivum L.) cultivars. J. Biol. Sci., 1: 935–937. DOI: https://doi.org/10.3923/jbs.2001.935.937

Jagajanantham, N., Dhanavel, D., Pavadai, P. & Chidambaram, A.A. (2012). Growth and yield parameters using gamma rays in bhendi (Abelmoschus esculentus (L.) Moench) var. arka anamika. International Journal of Research in Plant Science, 2(4): 56-58.

Kobori, N. N., Mastrangelo, T., Cicero, S. M., Cassieri, P., Moraes, M. H. D., & Walder, J. M. M. (2010). Effects of gamma irradiation on physiological and phytosanitary qualities of Brazilian castor bean seeds, Ricinus communis (cv. IAC Guarani). Research Journal of Seed Science, 3(2), 70-81. DOI: https://doi.org/10.3923/rjss.2010.70.81

Khan, M.R., Qureshi, A.S., Hussain, S.A. & Ibrahim, M. (2005). Genetic variability induced by gamma irradiation and its modulation with gibberellic acid in M2 generation of chickpea (Cicer arietinum L.). Pakistan Journal of Botany, 37(2): 285–292.

Kiong, A.L.P., Lai, A.G., Hussein, S. & Harun, A.R. (2008). Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. Am-Eurasian. J. Sustain. Agric., 2: 135–149.

Kumar, A. & Mishra, M.N. (2004). Effect of gamma-rays, EMS and NMU on germination, seedling vigour, pollen viability and plant survival in M1and M2 generation of okra (Abelmoschus esculentus (L.) Moench). Advances in Plant Science, 17(1): 295–297.

Latif, H.H., Abdalla, M.A. & Farag, S.A. (2011). Radio-stimulation of phytohormons and bioactive components of coriander seedlings. Turk. J. Biochem., 36(3): 230–236.

Larik, A.S., Memon. S. & Soomro, Z.A. 2009. Radiation induced polygenic mutations in Sorghum bicolor L. Journal of Agricultural Research, 47: 11–9.

Lehninger, A.L. (1982). Basics of Biochemistry. Erlangga, Jakarta.

Li, Y., Mao, P., Zhang, W., Wang, X., You, Y., Zhao, H., Zhai, L. & Liu, G. (2015). Dynamic expression of the nutritive values in forage sorghum populations associated with white, green and brown midrid genotypes. Field Crops Research, 184: 112–122. DOI: https://doi.org/10.1016/j.fcr.2015.09.008

Maamoun, M.K.M., El-Mahrouk, M.E., Dewir, Y.H. & Omran, S.A. (2014). Effect of radiation and chemical mutagens on seeds germination of black cumin (Nigella sativa L). Journal of Agricultural Technology, 10(5): 1183–1199.

Marcu, D., Damian, G., Cosma, C. & Cristea, V. (2013). Gamma radiation effects on seed germination, growth and pigment content and ESR study of induced free radicals in maize (Zea mays). J Biol Phys., 39: 625–634. DOI: https://doi.org/10.1007/s10867-013-9322-z

Moghaddam, S.S., Jaafar, H., Ibrahim, R., Rahmat, A., Aziz, M.A. & Philip, E. (2011). Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules, 16: 4994–5007. DOI: https://doi.org/10.3390/molecules16064994

Moussa, H. R. (2011). Low dose of gamma irradiation enhanced drought tolerance in soybean. Agronomica Hungarica, 59, 1–12. DOI: https://doi.org/10.1556/AAgr.59.2011.1.1

Nevena, S. (2002). Physiological effects of the synthetic growth regulator thidiazurol (drop) on gamma-irradiated stress in peas plants (Pisum sativum). Journal of Central European Agriculture, 3(4): 291-300.

Peykarestan, B. & M. Seify. (2012). Uv irradiation effects on seed germination and growth, protein contents, peroxidase and protease activity in redbean. International Research Journal of Applied and Basic Sciences, 3(1): 92-102.

Preuss, S.B. & Britt, A.B. (2003). A DNA-damage-induced cell cycle checkpoint in Arabidopsis. Genetics, 164: 323–334. DOI: https://doi.org/10.1093/genetics/164.1.323

Santosa, E., Pramono, S., Mine, Y., & Sugiyama, N. (2014). Gamma irradiation on growth and development of Amorphophallus muelleri Blume. Journal Agronomi Indonesia, 42(2), 118– 123.

Sarduie, N.S., Sharifi, S.G.R. & Torabi, S.M.H. (2010). Assessment of dissimilar gamma irradiations on barley (Hordeum vulgare spp.). J. Plant Breed Crop Sci., 4: 059-063.

Scully, E.D., Gries, T., Funnell-Harris, D.L., Xin, Z., Kovacs, F.A., Vermerris, W. & Sattler, S.E. (2016). Characterization of novel brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J. Integral Plant Biol., 58: 136-49. DOI: https://doi.org/10.1111/jipb.12375

Selvaraju, P. & Raja, K. (2001). Effect of gamma irradiation of seeds on germination of different tree species. In proceedings of IUFRO joint symposium on tree seed technology, physiology and tropical silviculture, pp: 141–142.

Shah, T.M., Mirza, J.I., Haq, M.A. & Atta, B.M. (2008). Radio sensitivity of various chickpea genotypes in M1 generation I-Laboratory studies. Pak. J. Bot., 40: 649–665.

Sherif, F. E., Khattab, S., Ghoname, E., Salem, N., & Radwan, K. (2011). Effect of gamma irradiation on enhancement of some economic traits and molecular changes in Hibiscus sabdariffa L. Life Science Journal, 8, 220– 229.

Steel, R.G.D. & Torrie, J.H. (1984). Principles and procedures of statistics. A biometrical approach. 2ndEd. McGraw Hill Book, Co. Inc.New York.

Tabasum, A., Cheema, A.A., Hameed, A., Rashid, M. & Ashraf, M. (2011). Radio sensitivity of rice genotypes to gamma radiations based on seedling traits and physiological indices. Pak. J. Bot., 43(2): 1211-1222.

Tarroum, M. Khan, S. & Al-Qurainy, F. (2011). Evaluation of drought tolerance of γ-irradiated mutants of Hordeum vulgare. Journal of Medicinal Plants, 5(14): 2969-2977.

Thapa, C.B. (2004). Effect of acute exposure of gamma rays on seed germination and seedling growth of Pinus kesiya Gord and P. wallichiana A.B. Jacks. Our Nature, 2: 13–17. DOI: https://doi.org/10.3126/on.v2i1.318

Tripathi, R.S.N. & Kumar, G. (2010). Comparative effect of ageing and gamma irradiation on the somatic cells of Lathyrus sativus L. J. Cent. Eur. Agric., 11(14): 437-442. DOI: https://doi.org/10.5513/JCEA01/11.4.858

Ullah, H. 2014. (2014). Estimation of induced variability of yield contributing traits in M1gamma irradiated germplasm of Okra (Abulmoschus Esculentus L.),” South Asian Journal of Life Sciences, 2(1): 4–7. DOI: https://doi.org/10.14737/journal.sajls/2014/2.1.4.7

Vandenhodt, H., Nathalie, V., May, V.H., Jean, W. & Nele, H. (2010). Life-cycle chronic gamma exposure of Arabidopsis thaliana induces growth effects but no discernable effects on oxidative stress pathways. Plant Physiology and Biochemistry, 48(9): 778-786. DOI: https://doi.org/10.1016/j.plaphy.2010.06.006

Wanga, A.M., Shimelis, H., Horn, N.L. & Sarsu, F. (2020). The Effect of single and combined use of gamma radiation and ethylmethane sulfonate on early growth parameters in sorghum. Plants, 9(827): 1-15. DOI: https://doi.org/10.3390/plants9070827

Zanzibar, M. & Sudrajat, J.D. (2016). Effect of gamma irradiation on seed germination, storage, and seedling growth of Magnolia champaca L. Indonesian Journal of Forestry Research, 3(2): 95-106. DOI: https://doi.org/10.20886/ijfr.2016.3.2.95-106

Downloads

Published

2020-02-09

How to Cite

Ahmad, I. ., Ahmad, I. ., Muhammad, Z. ., & Ullah, B. . (2020). Response of Sorghum vulgare L. Cultivars to Gamma Irradiation, a Preliminary Approach. Journal of Applied Research in Plant Sciences , 3(01), 215–223. https://doi.org/10.38211/joarps.2022.3.1.26