• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    优化神经网络下阿富汗东北高原寒旱区滑坡危险性评价

    余波 常鸣 倪章 孙文静 徐恒志

    余波, 常鸣, 倪章, 孙文静, 徐恒志, 2023. 优化神经网络下阿富汗东北高原寒旱区滑坡危险性评价. 地球科学, 48(5): 1825-1835. doi: 10.3799/dqkx.2022.392
    引用本文: 余波, 常鸣, 倪章, 孙文静, 徐恒志, 2023. 优化神经网络下阿富汗东北高原寒旱区滑坡危险性评价. 地球科学, 48(5): 1825-1835. doi: 10.3799/dqkx.2022.392
    Yu Bo, Chang Ming, Ni Zhang, Sun Wenjing, Xu Hengzhi, 2023. Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network. Earth Science, 48(5): 1825-1835. doi: 10.3799/dqkx.2022.392
    Citation: Yu Bo, Chang Ming, Ni Zhang, Sun Wenjing, Xu Hengzhi, 2023. Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network. Earth Science, 48(5): 1825-1835. doi: 10.3799/dqkx.2022.392

    优化神经网络下阿富汗东北高原寒旱区滑坡危险性评价

    doi: 10.3799/dqkx.2022.392
    基金项目: 

    第二次青藏高原综合科学考察研究项目 2019QZKK0902

    国家自然科学基金项目 42077245

    详细信息
      作者简介:

      余波(1996-),男,硕士研究生,主要从事遥感与地质灾害风险评价研究. ORCID:0000-0003-1489-4386.E-mail:yubo@stu.cdut.edu.cn

      通讯作者:

      常鸣,E-mail:changmxq@126.com

    • 中图分类号: P642.22

    Landslide Hazard Assessment in Northeast Afghanistan Plateau Based on Optimized Neural Network

    • 摘要: 阿富汗东北部是典型的高原寒旱地区,滑坡灾害发育,除受地形地貌、地质构造、人类活动等因素影响外,还由积雪覆盖、冰雪消融等方面控制;为研究高原寒旱地区滑坡危险性,在遥感解译基础数据上,考虑高原寒旱地区积雪覆盖和冰川活动对滑坡发育的影响,引入积雪覆盖度和消融水当量两个评价指标,基于证据权‒全连接神经网络模型建立滑坡易发性评价模型,以度日模型、SCS-CN模型建立滑坡危险性评价体系,并根据混淆矩阵对评价模型进行检验;危险性评价结果表明极高危险性区域占全区10.46%,分布灾害面积占比82.71%,主要分布在努尔斯坦省东部库纳尔‒奇特拉尔河段、巴达赫尚省除瓦罕走廊段的中东部高山区和帕尔万省赫尔曼德河段;高危险性区域占全区14.83%,分布灾害面积占比12.11%,主要分布在巴达赫尚省东部区域、努尔斯坦省和帕尔万省西部.检验结果及统计结果均表明结合证据权法取负样本对神经网络精度提升显著;研究成果为阿富汗滑坡灾害早期预警与工程防治提供科学依据.

       

    • 图  1  阿富汗东北部高原区地理位置

      Fig.  1.  Geographical location of the plateau region in northeast Afghanistan

      图  2  研究区滑坡及道路河流遥感解译图

      Fig.  2.  Remote sensing interpretation map of landslide, road and river

      图  3  研究区危险性评价研究思路

      Fig.  3.  Research ideas on hazard assessment

      图  4  研究区滑坡易发性指标

      Fig.  4.  Evaluation index of susceptibility to landslide

      图  5  研究区滑坡易发性指标统计

      Fig.  5.  Evaluation index statistics of susceptibility to landslide

      图  6  不同比例训练集、验证集数据成果

      Fig.  6.  Data results of training set and validation set in different proportions

      图  7  不同比例训练集验证集评价结果

      Fig.  7.  Different proportions of training sets verify the evaluation results of training sets

      图  8  研究区滑坡易发性评价

      Fig.  8.  Susceptibility evaluation map of landslide

      图  9  研究区土地利用类型分布

      Fig.  9.  Land use type

      图  10  研究区降雨分布

      Fig.  10.  Rainfall distribution map

      图  11  研究区地表径流估算

      Fig.  11.  Estimation map of surface runoff

      图  12  研究区温度分布

      Fig.  12.  Temperature distribution map

      图  13  研究区消融水当量

      Fig.  13.  Melt water equivalent map

      图  14  研究区滑坡危险性评价

      Fig.  14.  Classification map of landslide hazard assessment

      图  15  研究区滑坡危险性评价统计

      Fig.  15.  Statistical chart of landslide hazard assessment

      表  1  研究区基础数据来源

      Table  1.   Basic data sources

      分类 数据源 分辨率(m)
      底图 Google Earth Engine /
      DEM ASTER GDEM V3 30
      遥感影像 Planet 3
      水系
      道路
      地质构造 文献资料 /
      地震
      地层岩性 1:500万亚洲构造图 /
      降雨 美国国家航空航天局 600
      温度
      积雪覆盖度 Science Data Bank 600
      植被覆盖度(NDVI) Landsat8 30
      下载: 导出CSV

      表  2  不同土地利用下的CN值

      Table  2.   CN values under different land uses

      土壤湿度 干燥 适中 湿润
      裸地 69 70 84
      灌木 72 81 86
      草地 51 63 70
      森林 60 73 79
      冰川 80 88 95
      耕地 71 78 81
      人造地表 74 82 86
      湿地 40 60 78
      水体 100 100 100
      下载: 导出CSV

      表  3  研究区滑坡易发性评价指标相关性系数

      Table  3.   Correlation coefficients of landslide susceptibility evaluation index

      因子 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
      X1 1
      X2 0.112 1
      X3 0.148 0.038 1
      X4 0.014 ‒0.08 ‒0.38 1
      X5 ‒0.66 ‒0.25 ‒0.34 ‒0.03 1
      X6 ‒0.34 ‒0.33 0.104 0.256 ‒0.52 1
      X7 ‒0.17 ‒0.21 0.276 0.625 ‒0.06 0.323 1
      X8 0.124 0.107 0.128 0.031 0.013 ‒0.01 ‒0.12 1
      X9 ‒0.12 0.05 ‒0.29 ‒0.08 ‒0.04 ‒0.1 0.076 ‒0.15 1
      X10 0.213 0.193 0.346 ‒0.01 0.41 ‒0.01 0.036 0.021 0.009 1
      X11 0.186 0.139 0.141 ‒0.22 ‒0.03 ‒0.05 ‒0.05 ‒0.15 ‒0.08 0.236 1
      X12 ‒0.21 ‒0.25 ‒0.02 ‒0.11 0.049 ‒0.33 ‒0.03 0.024 ‒0.01 ‒0.26 0.084 1
      X13 ‒0.15 0.019 ‒0.01 ‒0.01 ‒0.09 0.07 0.306 0.021 ‒0.03 ‒0.13 ‒0.02 0.219 1
      X14 ‒0.02 0.001 0.001 ‒0.14 0.001 0.002 0.541 0.005 0.001 0.003 0.008 ‒0.01 0.002 1
      下载: 导出CSV

      表  4  研究区滑坡易发性评价统计

      Table  4.   Susceptibility statistics of landslide

      分级 分级面积(km²) 分级占比(%) 灾害面积(km²) 灾害占比(%) 灾害密度
      52 439 54.46 1.41 0.49 0.027×10‒3
      19 744 20.51 8.58 2.97 0.434×10‒3
      13 252 13.76 30.74 10.63 2.319×10‒3
      10 846 11.27 248.2 85.91 22.89×10‒3
      下载: 导出CSV

      表  5  研究区危险性权重判别矩阵

      Table  5.   Discriminant matrix of hazard weight

      因子名称 易发性 消融水当量 地表径流 权重
      易发性 1 4 5 0.665
      消融水当量 1/4 1 4 0.245
      地表径流 1/5 1/4 1 0.090
      下载: 导出CSV
    • Caniani, D., Pascale, S., Sdao, F., et al., 2008. Neural Networks and Landslide Susceptibility: A Case Study of the Urban Area of Potenza. Natural Hazards, 45(1): 55-72. https://doi.org/10.1007/s11069⁃007⁃9169⁃3
      Chang, M., Cui, P., Dou, X. Y., et al., 2021. Quantitative Risk Assessment of Landslides over the China⁃Pakistan Economic Corridor. International Journal of Disaster Risk Reduction, 63: 102441. https://doi.org/10.1016/j.ijdrr.2021.102441
      Fu, S. H., Wang, X. L., Wang, H. Y., et al., 2012. Meathod of Determining CN Value in the SCS⁃CN Method. Arid Land Geography, 35(3): 415-421 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHDL201203013.htm
      Gent, C. R., Sheppard, C. P., 1992. Special Feature. Predicting Time Series by a Fully Connected Neural Network Trained by Back Propagation. Control & Automation, 3(3): 109-112.
      Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE⁃BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
      Huang, R. Q., Xiang, X. Q., Ju, N. P., 2004. Assessment of China's Regional Geohazards: Present Situation and Problems. Geological Bulletin of China, 23(11): 1078-1082 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2004.11.005
      Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan⁃Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
      Huang, Y. D., Xu, C., Zhang, X. L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin, Tibet Mw6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32(5): 1069-1078. https://doi.org/10.1007/s12583⁃021⁃1433⁃z
      Le, J., Qu, C. H., Li, H. S., 2019. Status Quo of Agricultural Development in Afghanistan and China⁃Afghanistan Agricultural Cooperation Strategy. Agricultural Outlook, 15(5): 113-117 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-3908.2019.05.023
      Li, B. Y., Pan, B. T., 2002. Progress in Paleogeographic Study of the Tibetan Plateau. Geographical Research, 21(1): 61-70 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0585.2002.01.008
      Liu, J., Wu, Z., 2020. Landslide Risk Assessment of the Zhouqu⁃Wudu Section of Bailong River Basin Based on Geographic Information System. China Earthquake Engineering Journal, 42(6): 1723-1734 (in Chinese with English abstract).
      Liu, J. P., Zhang, W. C., 2018. Spatial Variability in Degree⁃Day Factors in Yarlung Zangbo River Basin in China. Journal of University of Chinese Academy of Sciences, 35(5): 704-711 (in Chinese with English abstract). http://www.researchgate.net/publication/337338025_Spatial_variability_in_degree-day_factors_in_Yarlung_Zangbo_River_Basin_in_China/download
      Liu, W. C., Zhang, Y., Liang, Y. W., et al., 2022. Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest. Remote Sensing, 14(9): 2131. https://doi.org/10.3390/rs14092131
      Liu, Y., Tang, C., Feng, Y., 2013. Geological Disaster Risk Assessment Based on AHP Information Method. Earth and Environment, 41(2): 173-179 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201302014.htm
      Maher, I. S., Biswajeet, P., Saro, L., 2020. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. Catena, 186(C): 104249. https://doi.org/10.1016/j.catena.2019.104249
      Nandi, A., Shakoor, A., 2008. Application of Logistic Regression Model for Slope Instability Prediction in Cuyahoga River Watershed, Ohio, USA. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2(1): 16-27. https://doi.org/10.1080/17499510701842221
      Pellicani, R., Argentiero, I., Spilotro, G., 2017. GIS⁃Based Predictive Models for Regional⁃Scale Landslide Susceptibility Assessment and Risk Mapping along Road Corridors. Geomatics, Natural Hazards and Risk, 8(2): 1012-1033. https://doi.org/10.1080/19475705.2017.1292411
      Pellicciotti, F., Brock, B., Strasser, U., et al., 2005. An Enhanced Temperature⁃Index Glacier Melt Model Including the Shortwave Radiation Balance: Development and Testing for Haut Glacier d'Arolla, Switzerland. Journal of Glaciology, 51(175): 573-587. https://doi.org/10.3189/172756505781829124
      Petpongpan, C. C., Ekkawatpanit, C., Kositgittiwong, D., 2021. Landslide Risk Assessment Using Hydrological Model in the Upper Yom River Basin, Thailand. Catena, 204: 105402. https://doi.org/10.1016/j.catena.2021.105402
      Psomiadis, E., Soulis, K. X., Efthimiou, N., 2020. Using SCS⁃CN and Earth Observation for the Comparative Assessment of the Hydrological Effect of Gradual and Abrupt Spatiotemporal Land Cover Changes. Water, 12(5): 1386. https://doi.org/10.3390/w12051386
      Regine, H., 2005. Glacier Melt: A Review of Processes and Their Modelling. Progress in Physical Geography, 29(3): 362-391. https://doi.org/10.1191/0309133305pp453ra
      Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall⁃Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science, 35(2): 317-323 (in Chinese with English abstract).
      Tang, C., Zhu, J., Zhang, X. R., 2001. GIS Based Earthquake Triggered Landslide Hazard Prediction. Journal of Seismoloical Research, 24(1): 73-81(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ200101011.htm
      Wang, D., Hao, M. M., Chen, S., et al., 2021. Assessment of Landslide Susceptibility and Risk Factors in China. Natural Hazards, 108(3): 3045-3059. https://doi.org/10.1007/s11069⁃021⁃04812⁃8
      Wang, Y. Y., 2015. Recent Disasters around the World. Overview of Disaster Prevention, (2): 90-95 (in Chinese).
      Wu, L. S., 2016. Geological Structure and Mineral Resources in Afghanistan (1). Mineral Deposits, 35(1): 203-208 (in Chinese).
      Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
      Xiang, X. Q., Huang, R. Q., 2000. Application of GIS⁃Based Artificial Neural Networks on Assessment of Geohazards Risk. The Chinese Journal of Geological Hazard and Control, 11(3): 23-27 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=ZGDH200003005&dbcode=CJFD&year=2000&dflag=pdfdown
      Xu, Q., Huang, R. Q., Xiang, X. Q., 2000. Time and Spacial Predicting of Geological Hazards Occurrence. Journal of Mountain Science, 18(S1): 112-117 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA2000S1024.htm
      Yu, H., Lu, Z., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. Catena, 165: 520-529. https://doi.org/10.1016/j.catena.2018.03.003
      Zhang, J., Yin, K. L., Wang, J. J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201602010.htm
      Zhou, C., Chang, M., Xu, L., et al., 2020. Risk Assessment of Typical Urban Mine Geological Disasters in Guizhou Province. Geomatics and Information Science of Wuhan University, 45(11): 1782-1791 (in Chinese with English abstract).
      符素华, 王向亮, 王红叶, 等, 2012. SCS⁃CN径流模型中CN值确定方法研究. 干旱区地理, 35(3): 415-421. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201203013.htm
      郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE⁃BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      黄润秋, 向喜琼, 巨能攀, 2004. 我国区域地质灾害评价的现状及问题. 地质通报, 23(11): 1078-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200411004.htm
      黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030. doi: 10.3799/dqkx.2021.243
      乐姣, 曲春红, 李辉尚, 2019. 阿富汗农业发展现状及中阿农业合作策略. 农业展望, 15(5): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-NYZW201905024.htm
      李炳元, 潘保田, 2002. 青藏高原古地理环境研究. 地理研究, 21(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ200201007.htm
      刘杰, 武震, 2020. 基于GIS的白龙江流域舟曲‒武都段的滑坡危险性评价. 地震工程学报, 42(6): 1723-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202006049.htm
      刘金平, 张万昌, 2018. 雅鲁藏布江流域度日因子空间变化(英文). 中国科学院大学学报, 35(5): 704-711. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201805018.htm
      刘洋, 唐川, 冯毅, 2013. 基于AHP⁃信息量法的地质灾害危险性评价. 地球与环境, 41(2): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201302014.htm
      唐川, 齐信, 丁军, 等, 2010. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析. 地球科学, 35(2): 317-323. doi: 10.3799/dqkx.2010.033
      唐川, 朱静, 张翔瑞, 2001. GIS支持下的地震诱发滑坡危险区预测研究. 地震研究, 24(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200101011.htm
      王一媛, 2015. 全球近期灾害录. 防灾博览, (2): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-FZBL202106015.htm
      吴良士, 2016. 阿富汗地质构造及其矿产资源(一). 矿床地质, 35(1): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201604016.htm
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      向喜琼, 黄润秋, 2000. 基于GIS的人工神经网络模型在地质灾害危险性区划中的应用. 中国地质灾害与防治学报, 11(3): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200003005.htm
      许强, 黄润秋, 向喜琼, 2000. 地质灾害发生时间和空间的预测预报. 山地学报, 18(S1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA2000S1024.htm
      张俊, 殷坤龙, 王佳佳, 等, 2016. 三峡库区万州区滑坡灾害易发性评价研究. 岩石力学与工程学报, 35(2): 284-296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602010.htm
      周超, 常鸣, 徐璐, 等, 2020. 贵州省典型城镇矿山地质灾害风险评价. 武汉大学学报(信息科学版), 45(11): 1782-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011015.htm
    • 加载中
    图(15) / 表(5)
    计量
    • 文章访问数:  460
    • HTML全文浏览量:  485
    • PDF下载量:  47
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-13
    • 网络出版日期:  2023-06-06
    • 刊出日期:  2023-05-25

    目录

      /

      返回文章
      返回