Skip to main content

Open Access Anticancer Effects of Fullerene [C60] Included in Polyethylene Glycol Combined With Visible Light Irradiation Through ROS Generation and DNA Fragmentation on Fibrosarcoma Cells With Scarce Cytotoxicity to Normal Fibroblasts

Fullerene [C60] included in polyethylene glycol (PEG) at a composing ratio of 1:350 w/w was examined for anticancer effects upon photodynamic therapy (PDT). Human connective tissue-derived fibrosarcoma cells HT1080 were decreased for a viability of 50% or 30%, by 3-h administration with PEG-fullerene [C60] at 50 or 100 ppm fullerene [C60] equivalent, respectively, subsequent rinsing out and irradiation with visible light (400‐600 nm, 140 J/cm2:450-fold as intense as in average outdoor), whereas the same tissue type-derived normal fibroblastic cells DUMS16 retained a viability of 93% or 85% under the same conditions. Anticancer effects were dependent on PEG-fullerene [C60] concentrations and irradiation doses, and scarcely exerted by PEG-fullerene [C60] alone, irradiation alone, or by fullerene [C60]-free PEG combined with irradiation, suggesting that the active principle may be fullerene [C60] as small as 0.0028 wt% versus the whole compound. Irradiation with PEG-fullerene [C60] occurred in intracellular DNA fragmentation according to TUNEL assay, and produced reactive oxygen species (ROS) such as hydroperoxides and peroxyl radicals or superoxide anion radicals in HT1080 cells as demonstrated by CDCFH-DA assay or nitroblue tetrazolium assay, respectively. Thus, PEG-fullerene [C60] is expected to be applied to anticancer PDT with scarce side effects on normal cells.

Keywords: DNA fragmentation; Fullerene [C60] included in polyethylene glycol; Irradiation; Photodynamic therapy (PDT); Reactive Oxygen Species (ROS)

Document Type: Research Article

Publication date: 01 May 2011

More about this publication?
  • Formerly: Oncology Research Incorporating Anti-Cancer Drug Design
    Oncology Research Featuring Preclinical and Clincal Cancer Therapeutics publishes research of the highest quality that contributes to an understanding of cancer in areas of molecular biology, cell biology, biochemistry, biophysics, genetics, biology, endocrinology, and immunology, as well as studies on the mechanism of action of carcinogens and therapeutic agents, reports dealing with cancer prevention and epidemiology, and clinical trials delineating effective new therapeutic regimens.

    From Volume 23, Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics is Open Access under the terms of the Creative Commons CC BY-NC-ND license.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content