Research Article
BibTex RIS Cite

Decolorization of Reactive Black 5 Using N-Doped TiO2

Year 2022, Volume: 35 Issue: 2, 360 - 370, 01.06.2022
https://doi.org/10.35378/gujs.828761

Abstract

Decolorization of Reactive Black 5 (RB5) was investigated by heterogeneous photocatalysis using N-doped TiO2. N-doped TiO2 photocatalysts were synthesized by means of a sol-gel process. X-ray diffraction performed the characterization of synthesized samples, scanning electron microscopy and X-ray photoelectron spectroscopy measurements. Photocatalytic activity of N-doped TiO2 samples was assessed by following decolorization and degradation efficiency of RB5. N-TiO2(3) sample yielded the highest decolorization efficiency. The apparent first-order rate constants for decolorization of RB5 with N-TiO2(X) samples followed the order of N-TiO2(3) > N-TiO2(2) > N-TiO2(4) > N-TiO2(1). Improvement of decolorization efficiency of TiO2 was observed doping with nitrogen. The effect of actual sunlight on decolorization efficiency was also investigated. 96% and 49% of decolorization efficiency levels were attained within 60 minutes of reaction time with outdoor sunlight and fluorescent daylight lamps, respectively. 

Supporting Institution

Scientific and Technological Research Council of Turkey

Project Number

2209/A

References

  • [1] Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N.M., Pandit, A.B., “A critical review on textile wastewater treatments: Possible approaches”, Journal of Environmental Management, 182: 351-366, (2016).
  • [2] Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A., Bandala, E.R., “Treatment technologies for emerging contaminants in water: A review”, Chemical Engineering Journal, 323: 361-380, (2017). [3] Shahidi, D., Roy, R., Azzouz, A., “Advances in catalytic oxidation of organic pollutants – Prospects for thorough mineralization by natural clay catalysts”, Applied Catalysis B-Environmental, 174-175: 277-292, (2015).
  • [4] Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H., “Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review”, Journal of Environmental Chemical Engineering, 7: 103248, (2019).
  • [5] Wetchakuna, K., Wetchakunb, N., Sakulsermsuk, S., “An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2 - and ZnO-based photocatalysts used in suspension photoreactors”, Journal of Industrial and Engineering Chemistry, 71: 19-49, (2019).
  • [6] He, X., Wang, A., Wu, P., Tang, S., Zhang, Y., Li, L., Ding, P.,“ Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review”, Science of The Total Environment, 743: 140694, (2020).
  • [7] Perillo, P.M., Rodríguez, D.F., “Photocatalysis of Methyl Orange using free standing TiO2 nanotubes under solar light”, Environmental Nanotechnology, Monitoring & Management, 16: 100479, (2021). [8] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, 293: 269-271, (2001).
  • [9] Cheng, X., Yu, X., Xing, Z., “Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity”, Applied Surface Science, 258(7): 3244-3248, (2012).
  • [10] Fu, J., Tian, Y., Chang, B., Xi, F., Dong, X., “Facile fabrication of N-doped TiO2 nanocatalyst with superior performance under visible light irradiation”, Journal of Solid State Chemistry, 199: 280-286, (2013). [11] Ansari, S.A., Khan, M.M., Ansari, M. O., Cho, M.H., “Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis”, New Journal of Chemistry, 40: 3000-3009, (2016).
  • [12] Tian, G., Pan, K., Fu, H., Jing, L., Zhou, W., “Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation”, Journal of Hazardous Materials, 166: 939-944, (2009).
  • [13] McManamon, C., O’Connell, J., Delaney, P., Rasappa, S., Holmes, J. D., Morris, M. A., “A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity”, Journal of Molecular Catalysis A: Chemical, 406: 51-57, (2015).
  • [14] Lin, Y.-T., Weng, C.-H., Lin, Y.-H., Shiesh, C., Chen, F.-Y., “Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst”, Separation and Purification Technology, 116: 114-123, (2013). [15] Sullivan, J.J.A., Neville, E.M., Herron, R., Thampi, K. R., Mac Elroy, J.M.D., “Routes to visible light active C-doped TiO2 photocatalysts using carbon atoms from the Ti precursors”, Journal of Photochemistry and Photobiology A: Chemistry, 289: 60-65, (2014).
  • [16] Peng, F., Cai, L., Yu, H., Wang, H., Yang, J., “Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity”, Journal of Solid State Chemistry, 181: 130-136, (2008).
  • [17] Asghar, A., Raman, A.A.A., Daud, W.M.A.W., “Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review”, Journal of Cleaner Production, 87: 826-838, (2015). [18] Bilinska, L., Gmurek, M., Ledakowicz, S., “Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment”, Chemical Engineering Journal, 306: 550-559, (2016).
  • [19] Ambigadevi, J., Kumar, S.P., Vo, D.V. N., Haran, S.H., Raghavan, T.N.S., “Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst: A review”, Journal of Environmental Chemical Engineering, 9:104881, (2021).
  • [20] Selvaraj, V., Karthikaa, T.S., Mansiya, C., Alagar, M., “An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications”, Journal of Molecular Structure, 1224: 129195, (2021).
  • [21] Rochkind, M., Pasternak, S., Paz, Y., “Using dyes for evaluating photocatalytic properties: A critical review”, Molecules, 20: 88-110, (2015). [22] Akpan, U.G., Hameed, B.H., “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review”, Journal of Hazardous Materials, 170: 520-529, (2009). [23] Collazzo, G.C., Foletto, E.L., Jahn, S.L., Villetti, M.A., “Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst”, Journal of Environmental Management, 98: 107-111, (2012). [24] Yeber, M.C., Zamora, T., Álvarez, R., Medina, P., “N-doped titanium dioxide nanoparticles activated under visible light achieve the photocatalytic degradation of textile azo dye remazol brilliant blue R”, Desalination and Water Treatment, 151: 161–166, (2019). [25] Berktaş, A., Kartal, Ö.E., “Synthesis of N-Doped TiO2 by sol-gel method and investigation of its photocatalytic activity”, 11th National Congress on Chemical Engineering, Eskişehir, 174-177, (2014).
  • [26] Spurr, R.A., Myers, H., “Quantitative analysis of anatase-rutile mixtures with an X-Ray Diffractometer”, Analytical Chemistry, 29: 760-762, (1957).
  • [27] Lin, Y. H., Chiu, T. C., Hsueh, H. T., Chu, H., “N-doped TiO2 photo-catalyst for the degradation of 1, 2-dichloroethane under fluorescent light”, Applied Surface Science, 258: 1581-1586, (2011).
  • [28] Huang, W.C., Ting, J.M., “Novel nitrogen-doped anatase TiO2 mesoporous bead photocatalysts for enhanced visible light response”, Ceramics International, 43(13): 9992-9997, (2017).
  • [29] Kalantari, K., Kalbasi, M., Sonrabi, M., Royaee, S.J., “Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light”, Ceramics International, 42(13): 14834-14842, (2016).
  • [30] Lee, S., Chou, I.S., Lee, D.K., Kim, D.W., Noh, T.H., Kwak, C.H., Park, S., Hong, K.S., Lee, J.-K., Jung, H.S., “Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light”, Journal of Photochemistry and Photobiology A: Chemistry, 213: 129-135, (2010).
  • [31] Ma, Y., Zhang, J., Tian, B., Chen, F., Wang, L., “Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity”, Journal of Hazardous Materials, 182: 386-393, (2010).
  • [32] Gai, L., Mei, Q., Duan, X., Jiang, H., Zhou, G., Tian, Y., Lu, X., “Controlled synthesis of nitrogen-doped binary and ternary TiO2 nanostructures with enhanced visible-light catalytic activity”, Journal of Solid State Chemistry, 199: 271-279, (2013).
  • [33] Senthilnathan, J., Philip, L., “Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2”, Chemical Engineering Journal, 161: 83-92, (2010).
  • [34] Din, M.İ., Khalid, R., Najeeb, J., Hussain, Z., “Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies- a critical review”, Journal of Cleaner Production, 298: 126567, (2021).
  • [35] Damodar, R.A., You, S. J., “Performance of an integrated membrane photocatalytic reactor for the removal of Reactive Black 5”, Separation and Purification Technology, 71: 44-49, (2010).
  • [36] Turkish State Meteorological Service https://www.mgm.gov.tr/kurumici/radyasyon_iller.aspx?il=malatya Access date: 06.05.2021
Year 2022, Volume: 35 Issue: 2, 360 - 370, 01.06.2022
https://doi.org/10.35378/gujs.828761

Abstract

Project Number

2209/A

References

  • [1] Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N.M., Pandit, A.B., “A critical review on textile wastewater treatments: Possible approaches”, Journal of Environmental Management, 182: 351-366, (2016).
  • [2] Rodriguez-Narvaez, O.M., Peralta-Hernandez, J.M., Goonetilleke, A., Bandala, E.R., “Treatment technologies for emerging contaminants in water: A review”, Chemical Engineering Journal, 323: 361-380, (2017). [3] Shahidi, D., Roy, R., Azzouz, A., “Advances in catalytic oxidation of organic pollutants – Prospects for thorough mineralization by natural clay catalysts”, Applied Catalysis B-Environmental, 174-175: 277-292, (2015).
  • [4] Al-Mamun, M.R., Kader, S., Islam, M.S., Khan, M.Z.H., “Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review”, Journal of Environmental Chemical Engineering, 7: 103248, (2019).
  • [5] Wetchakuna, K., Wetchakunb, N., Sakulsermsuk, S., “An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2 - and ZnO-based photocatalysts used in suspension photoreactors”, Journal of Industrial and Engineering Chemistry, 71: 19-49, (2019).
  • [6] He, X., Wang, A., Wu, P., Tang, S., Zhang, Y., Li, L., Ding, P.,“ Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review”, Science of The Total Environment, 743: 140694, (2020).
  • [7] Perillo, P.M., Rodríguez, D.F., “Photocatalysis of Methyl Orange using free standing TiO2 nanotubes under solar light”, Environmental Nanotechnology, Monitoring & Management, 16: 100479, (2021). [8] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides”, Science, 293: 269-271, (2001).
  • [9] Cheng, X., Yu, X., Xing, Z., “Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity”, Applied Surface Science, 258(7): 3244-3248, (2012).
  • [10] Fu, J., Tian, Y., Chang, B., Xi, F., Dong, X., “Facile fabrication of N-doped TiO2 nanocatalyst with superior performance under visible light irradiation”, Journal of Solid State Chemistry, 199: 280-286, (2013). [11] Ansari, S.A., Khan, M.M., Ansari, M. O., Cho, M.H., “Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis”, New Journal of Chemistry, 40: 3000-3009, (2016).
  • [12] Tian, G., Pan, K., Fu, H., Jing, L., Zhou, W., “Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation”, Journal of Hazardous Materials, 166: 939-944, (2009).
  • [13] McManamon, C., O’Connell, J., Delaney, P., Rasappa, S., Holmes, J. D., Morris, M. A., “A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity”, Journal of Molecular Catalysis A: Chemical, 406: 51-57, (2015).
  • [14] Lin, Y.-T., Weng, C.-H., Lin, Y.-H., Shiesh, C., Chen, F.-Y., “Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst”, Separation and Purification Technology, 116: 114-123, (2013). [15] Sullivan, J.J.A., Neville, E.M., Herron, R., Thampi, K. R., Mac Elroy, J.M.D., “Routes to visible light active C-doped TiO2 photocatalysts using carbon atoms from the Ti precursors”, Journal of Photochemistry and Photobiology A: Chemistry, 289: 60-65, (2014).
  • [16] Peng, F., Cai, L., Yu, H., Wang, H., Yang, J., “Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity”, Journal of Solid State Chemistry, 181: 130-136, (2008).
  • [17] Asghar, A., Raman, A.A.A., Daud, W.M.A.W., “Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review”, Journal of Cleaner Production, 87: 826-838, (2015). [18] Bilinska, L., Gmurek, M., Ledakowicz, S., “Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment”, Chemical Engineering Journal, 306: 550-559, (2016).
  • [19] Ambigadevi, J., Kumar, S.P., Vo, D.V. N., Haran, S.H., Raghavan, T.N.S., “Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst: A review”, Journal of Environmental Chemical Engineering, 9:104881, (2021).
  • [20] Selvaraj, V., Karthikaa, T.S., Mansiya, C., Alagar, M., “An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications”, Journal of Molecular Structure, 1224: 129195, (2021).
  • [21] Rochkind, M., Pasternak, S., Paz, Y., “Using dyes for evaluating photocatalytic properties: A critical review”, Molecules, 20: 88-110, (2015). [22] Akpan, U.G., Hameed, B.H., “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review”, Journal of Hazardous Materials, 170: 520-529, (2009). [23] Collazzo, G.C., Foletto, E.L., Jahn, S.L., Villetti, M.A., “Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst”, Journal of Environmental Management, 98: 107-111, (2012). [24] Yeber, M.C., Zamora, T., Álvarez, R., Medina, P., “N-doped titanium dioxide nanoparticles activated under visible light achieve the photocatalytic degradation of textile azo dye remazol brilliant blue R”, Desalination and Water Treatment, 151: 161–166, (2019). [25] Berktaş, A., Kartal, Ö.E., “Synthesis of N-Doped TiO2 by sol-gel method and investigation of its photocatalytic activity”, 11th National Congress on Chemical Engineering, Eskişehir, 174-177, (2014).
  • [26] Spurr, R.A., Myers, H., “Quantitative analysis of anatase-rutile mixtures with an X-Ray Diffractometer”, Analytical Chemistry, 29: 760-762, (1957).
  • [27] Lin, Y. H., Chiu, T. C., Hsueh, H. T., Chu, H., “N-doped TiO2 photo-catalyst for the degradation of 1, 2-dichloroethane under fluorescent light”, Applied Surface Science, 258: 1581-1586, (2011).
  • [28] Huang, W.C., Ting, J.M., “Novel nitrogen-doped anatase TiO2 mesoporous bead photocatalysts for enhanced visible light response”, Ceramics International, 43(13): 9992-9997, (2017).
  • [29] Kalantari, K., Kalbasi, M., Sonrabi, M., Royaee, S.J., “Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light”, Ceramics International, 42(13): 14834-14842, (2016).
  • [30] Lee, S., Chou, I.S., Lee, D.K., Kim, D.W., Noh, T.H., Kwak, C.H., Park, S., Hong, K.S., Lee, J.-K., Jung, H.S., “Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light”, Journal of Photochemistry and Photobiology A: Chemistry, 213: 129-135, (2010).
  • [31] Ma, Y., Zhang, J., Tian, B., Chen, F., Wang, L., “Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity”, Journal of Hazardous Materials, 182: 386-393, (2010).
  • [32] Gai, L., Mei, Q., Duan, X., Jiang, H., Zhou, G., Tian, Y., Lu, X., “Controlled synthesis of nitrogen-doped binary and ternary TiO2 nanostructures with enhanced visible-light catalytic activity”, Journal of Solid State Chemistry, 199: 271-279, (2013).
  • [33] Senthilnathan, J., Philip, L., “Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2”, Chemical Engineering Journal, 161: 83-92, (2010).
  • [34] Din, M.İ., Khalid, R., Najeeb, J., Hussain, Z., “Fundamentals and photocatalysis of methylene blue dye using various nanocatalytic assemblies- a critical review”, Journal of Cleaner Production, 298: 126567, (2021).
  • [35] Damodar, R.A., You, S. J., “Performance of an integrated membrane photocatalytic reactor for the removal of Reactive Black 5”, Separation and Purification Technology, 71: 44-49, (2010).
  • [36] Turkish State Meteorological Service https://www.mgm.gov.tr/kurumici/radyasyon_iller.aspx?il=malatya Access date: 06.05.2021
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Chemical Engineering
Authors

Aslı Berktaş 0000-0001-7032-0702

Özlem Esen Kartal 0000-0002-7510-5427

Project Number 2209/A
Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 35 Issue: 2

Cite

APA Berktaş, A., & Kartal, Ö. E. (2022). Decolorization of Reactive Black 5 Using N-Doped TiO2. Gazi University Journal of Science, 35(2), 360-370. https://doi.org/10.35378/gujs.828761
AMA Berktaş A, Kartal ÖE. Decolorization of Reactive Black 5 Using N-Doped TiO2. Gazi University Journal of Science. June 2022;35(2):360-370. doi:10.35378/gujs.828761
Chicago Berktaş, Aslı, and Özlem Esen Kartal. “Decolorization of Reactive Black 5 Using N-Doped TiO2”. Gazi University Journal of Science 35, no. 2 (June 2022): 360-70. https://doi.org/10.35378/gujs.828761.
EndNote Berktaş A, Kartal ÖE (June 1, 2022) Decolorization of Reactive Black 5 Using N-Doped TiO2. Gazi University Journal of Science 35 2 360–370.
IEEE A. Berktaş and Ö. E. Kartal, “Decolorization of Reactive Black 5 Using N-Doped TiO2”, Gazi University Journal of Science, vol. 35, no. 2, pp. 360–370, 2022, doi: 10.35378/gujs.828761.
ISNAD Berktaş, Aslı - Kartal, Özlem Esen. “Decolorization of Reactive Black 5 Using N-Doped TiO2”. Gazi University Journal of Science 35/2 (June 2022), 360-370. https://doi.org/10.35378/gujs.828761.
JAMA Berktaş A, Kartal ÖE. Decolorization of Reactive Black 5 Using N-Doped TiO2. Gazi University Journal of Science. 2022;35:360–370.
MLA Berktaş, Aslı and Özlem Esen Kartal. “Decolorization of Reactive Black 5 Using N-Doped TiO2”. Gazi University Journal of Science, vol. 35, no. 2, 2022, pp. 360-7, doi:10.35378/gujs.828761.
Vancouver Berktaş A, Kartal ÖE. Decolorization of Reactive Black 5 Using N-Doped TiO2. Gazi University Journal of Science. 2022;35(2):360-7.