Document Type : Original Article

Authors

1 Student of Medicine, Student Research Committee, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

2 Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

3 Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

4 Bam University of Medical Sciences, Bam, Ker.man, Iran

5 Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran & Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran

6 Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Background: In our previous studies, the effect of sex hormones on brain edema reduction after traumatic brain injury (TBI) was demonstrated. In the current study, alone and combined effects of 17-β estradiol (E2) and vitamin D (Vit D) on TBI in male rats were investigated.
Methods: Male rats were divided into six groups, including sham, TBI, vehicle, E2, Vit D, and E2+Vit D. In all groups except sham, moderate-intensity diffuse TBI was induced by the Marmarou’s method. Vehicle, E2, Vit D and their combination were intramusculary injected one and 12 hours after the TBI. The brain water content, permeability of blood brain barrier (BBB) and histopathological outcome were assessed 24h after TBI. The neurological outcome score was determined using the veterinary coma scale (VCS).
Results: Significant reductions in brain water content (P<0.001, P<0.05 and P<0.01, respectively) and BBB permeability (P<0.001) appeared in the treated groups with E2, Vit D, and E2+Vit D compared to the vehicle group. Twenty-four hours after the injury, the neurological scores in the E2, Vit D, and E2+Vit D groups increased significantly compared to the vehicle group (P<0.05). Dramatic improvement in histopathological outcome was also observed in the treated groups compared to the vehicle group.
Conclusion: Alone and combined consumption of estrogen and vitamin D may similarly decrease the development of brain edema and improve the neurological and histopathological consequences of TBI. Therefore, consumption of vitamin D did not enhance the neuroprotective effect of estrogen in TBI.

Keywords

Peeters W, van den Brande R, Polinder S, Brazinova 
A, Steyerberg EW, Lingsma HF, et al. Epidemiology of 
traumatic brain injury in Europe. Acta Neurochir (Wien). 
2015;157(10):1683-96. doi: 10.1007/s00701-015-2512-7.
2. Cuthbert JP, Harrison-Felix C, Corrigan JD, Kreider S, Bell JM, 
Coronado VG, et al. Epidemiology of adults receiving acute 
inpatient rehabilitation for a primary diagnosis of traumatic 
brain injury in the United States. J Head Trauma Rehabil. 
2015;30(2):122-35. doi: 10.1097/htr.0000000000000012.
3. Rahimi-Movaghar V, Saadat S, Rasouli MR, Ghahramani M, 
Eghbali A. The incidence of traumatic brain injury in Tehran, 
Iran: a population based study. Am Surg. 2011;77(6):e112-4.
4. Scott C, McKinlay A, McLellan T, Britt E, Grace R, 
MacFarlane M. A comparison of adult outcomes for males 
compared to females following pediatric traumatic brain 
injury. Neuropsychology. 2015;29(4):501-8. doi: 10.1037/
neu0000074.
5. de Guise E, LeBlanc J, Dagher J, Tinawi S, Lamoureux J, 
Marcoux J, et al. Outcome in women with traumatic brain 
injury admitted to a level 1 trauma center. Int Sch Res Notices. 
2014;2014:263241. doi: 10.1155/2014/263241.
6. Kaur P, Sharma S. Recent advances in pathophysiology 
of traumatic brain injury. Curr Neuropharmacol. 
2018;16(8):1224-38. doi: 10.2174/1570159x15666170613
083606.
7. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic 
spinal cord injury: an overview of pathophysiology, models 
and acute injury mechanisms. Front Neurol. 2019;10:282. 
doi: 10.3389/fneur.2019.00282.
8. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, 
and impact on disability of common conditions requiring 
rehabilitation in the United States: stroke, spinal cord injury, 
traumatic brain injury, multiple sclerosis, osteoarthritis, 
rheumatoid arthritis, limb loss, and back pain. Arch Phys 
Med Rehabil. 2014;95(5):986-95.e1. doi: 10.1016/j.
apmr.2013.10.032.
9. Khaksari M, Soltani Z, Shahrokhi N. Effects of female sex 
steroids administration on pathophysiologic mechanisms in 
traumatic brain injury. Transl Stroke Res. 2018;9(4):393-416. 
doi: 10.1007/s12975-017-0588-5.
10. Shamsi Meymandi M, Soltani Z, Sepehri G, Amiresmaili S, 
Farahani F, Moeini Aghtaei M. Effects of pregabalin on brain 
edema, neurologic and histologic outcomes in experimental 
traumatic brain injury. Brain Res Bull. 2018;140:169-75. doi: 
10.1016/j.brainresbull.2018.05.001.
11. Soltani Z, Khaksari M, Shahrokhi N, Nakhaei N, Shaibani 
V. Effect of combined administration of estrogen and 
progesterone on brain edema and neurological outcome after 
traumatic brain injury in female rats. Iran J Endocrinol Metab. 
2009;10(6):629-64. [Persian].
12. Sharma D, Vavilala MS. Perioperative management of adult 
traumatic brain injury. Anesthesiol Clin. 2012;30(2):333-46. 
doi: 10.1016/j.anclin.2012.04.003.
13. Soltani N, Soltani Z, Khaksari M, Ebrahimi G, Hajmohammmadi 
M, Iranpour M. The changes of brain edema and neurological 
outcome, and the probable mechanisms in diffuse traumatic 
brain injury induced in rats with the history of exercise. Cell 
Journal of Kerman University of Medical Sciences. Volume 29, Number 5, 2022 443
Vitamin D and estrogen combination in traumatic brain injury
Mol Neurobiol. 2020;40(4):555-67. doi: 10.1007/s10571-
019-00753-w.
14. Shahrokhi N, Khaksari M, AsadiKaram G, Soltani Z, Shahrokhi 
N. Role of melatonin receptors in the effect of estrogen
on brain edema, intracranial pressure and expression of
aquaporin 4 after traumatic brain injury. Iran J Basic Med Sci.
2018;21(3):301-8. doi: 10.22038/ijbms.2018.25928.6377.
15. Khaksari M, Rajizadeh MA, Bejeshk MA, Soltani Z, Motamedi 
S, Moramdi F, et al. Does inhibition of angiotensin function
cause neuroprotection in diffuse traumatic brain injury?
Iran J Basic Med Sci. 2018;21(6):615-20. doi: 10.22038/
ijbms.2018.26586.6512.
16. Dehghanian F, Soltani Z, Khaksari M. Can mesenchymal
stem cells act multipotential in traumatic brain injury? J Mol
Neurosci. 2020;70(5):677-88. doi: 10.1007/
s12031-019-01475-w.
17. Margulies S, Hicks R. Combination therapies for traumatic
brain injury: prospective considerations. J Neurotrauma.
2009;26(6):925-39. doi: 10.1089/neu.2008.0794.
18. Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera
R. Oestrogens and progestagens: synthesis and action in
the brain. J Neuroendocrinol. 2016;28(7). doi: 10.1111/
jne.12402.
19. Maki PM. Minireview: effects of different HT formulations
on cognition. Endocrinology. 2012;153(8):3564-70. doi:
10.1210/en.2012-1175.
20. Brown CM, Mulcahey TA, Filipek NC, Wise PM. Production
of proinflammatory cytokines and chemokines during
neuroinflammation: novel roles for estrogen receptors
alpha and beta. Endocrinology. 2010;151(10):4916-25. doi:
10.1210/en.2010-0371.
21. Raghava N, Das BC, Ray SK. Neuroprotective effects of
estrogen in CNS injuries: insights from animal models.
Neurosci Neuroecon. 2017;6:15-29. doi: 10.2147/nan.
s105134.
22. Müller MM, Middelanis J, Meier C, Surbek D, Berger R. 17βestradiol protects 7-day old rats from acute brain injury and 
reduces the number of apoptotic cells. Reprod Sci.
2013;20(3):253-61. doi: 10.1177/1933719112452471.
23. Shahrokhi N, Khaksari Haddad M, Joukar S, Shabani M,
Keshavarzi Z, Shahozehi B. Neuroprotective antioxidant
effect of sex steroid hormones in traumatic brain injury. Pak J
Pharm Sci. 2012;25(1):219-25.
24. Khaksari Haddad M, Keshavarzi Z, Golamhoseinian A,
Bibak B. The effect of female sexual hormones on the 
intestinal and serum cytokine response after traumatic brain 
injury: different roles for estrogen receptor subtypes. 
2013;91(9):700-7 doi: 10.1139/cjpp-2012-0359.
25. Perez-Alvarez MJ, Mateos L, Alonso A, Wandosell F. Estradiol 
and progesterone administration after pMCAO stimulates
the neurological recovery and reduces the detrimental
effect of ischemia mainly in hippocampus. Mol Neurobiol.
2015;52(3):1690-703. doi: 10.1007/s12035-014-8963-7.
26. Naderi V, Khaksari M, Abbasi R, Maghool F. Estrogen 
provides neuroprotection against brain edema and blood 
brain barrier disruption through both estrogen receptors α
and β following traumatic brain injury. Iran J Basic Med Sci. 
2015;18(2):138-44.
27. Liu R, Wen Y, Perez E, Wang X, Day AL, Simpkins JW, et
al. 17beta-Estradiol attenuates blood-brain barrier disruption
induced by cerebral ischemia-reperfusion injury in female
rats. Brain Res. 2005;1060(1-2):55-61. doi: 10.1016/j.
brainres.2005.08.048.
28. Di Somma C, Scarano E, Barrea L, Zhukouskaya VV,
Savastano S, Mele C, et al. Vitamin D and neurological
diseases: an endocrine view. Int J Mol Sci. 2017;18(11):2482. 
doi: 10.3390/ijms18112482.
29. Balden R, Selvamani A, Sohrabji F. Vitamin D deficiency
exacerbates experimental stroke injury and dysregulates
ischemia-induced inflammation in adult rats. Endocrinology.
2012;153(5):2420-35. doi: 10.1210/en.2011-1783.
30. Aminmansour B, Nikbakht H, Ghorbani A, Rezvani M,
Rahmani P, Torkashvand M, et al. Comparison of the
administration of progesterone versus progesterone and
vitamin D in improvement of outcomes in patients with
traumatic brain injury: a randomized clinical trial with placebo 
group. Adv Biomed Res. 2012;1:58. doi: 
10.4103/2277-9175.100176.
31. Hajmohammadi M, Khaksari M, Soltani Z, Shahrokhi N,
Najafipour H, Abbasi R. The effect of candesartan alone and
its combination with estrogen on post-traumatic brain injury
outcomes in female rats. Front Neurosci. 2019;13:1043. doi:
10.3389/fnins.2019.01043.
32. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et
al. Progesterone and vitamin D combination therapy
modulates inflammatory response after traumatic
brain injury. Brain Inj. 2015;29(10):1165-74. doi:
10.3109/02699052.2015.1035330.
33. Shahrokhi N, Khaksari M, Soltani Z, Mahmoodi M, Nakhaee
N. Effect of sex steroid hormones on brain edema, intracranial 
pressure, and neurologic outcomes after traumatic brain
injury. Can J Physiol Pharmacol. 2010;88(4):414-21. doi:
10.1139/y09-126.
34. Soltani Z, Khaksari M, Shahrokhi N, Mohammadi G, Mofid
B, Vaziri A, et al. Effect of estrogen and/or progesterone
administration on traumatic brain injury-caused brain edema: 
the changes of aquaporin-4 and interleukin-6. J Physiol
Biochem. 2016;72(1):33-44. doi: 10.1007/
s13105-015-0453-5.
35. Hua F, Reiss JI, Tang H, Wang J, Fowler X, Sayeed I, et al.
Progesterone and low-dose vitamin D hormone treatment
enhances sparing of memory following traumatic brain
injury. Horm Behav. 2012;61(4):642-51. doi: 10.1016/j.
yhbeh.2012.02.017.
36. Soltani Z, Khaksari M, Jafari E, Iranpour M, Shahrokhi
N. Is genistein neuroprotective in traumatic brain injury?
Physiol Behav. 2015;152(Pt A):26-31. doi: 10.1016/j.
physbeh.2015.08.037.
37. Khaksari M, Mahmmodi R, Shahrokhi N, Shabani M, Joukar S, 
Aqapour M. The effects of shilajit on brain edema, intracranial 
pressure and neurologic outcomes following the traumatic
brain injury in rat. Iran J Basic Med Sci. 2013;16(7):858-64.
38. Khaksari M, Hajializadeh Z, Shahrokhi N, Esmaeili-Mahani S. 
Changes in the gene expression of estrogen receptors 
involved in the protective effect of estrogen in rat's 
trumatic brain injury. Brain Research. 2015;89(1):1-8. doi: 
10.1016/j.brainres.2015.05.017.
39. Soltani Z, Khaksari M, Amiresmaili S, Naderi V, Jafari E,
Shahrokhi N. Can soy diet be protective in severe and diffuse
traumatic brain injury? J Neurol Neurophysiol. 2014;5(6):249. 
doi: 10.4172/2155-9562.1000249.
40. King DR, Cohn SM, Proctor KG. Changes in intracranial
pressure, coagulation, and neurologic outcome after
resuscitation from experimental traumatic brain injury with
hetastarch. Surgery. 2004;136(2):355-63. doi: 10.1016/j.
surg.2004.05.011.
41. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP.
Histopathology and biochemistry analysis of the interaction
between sunitinib and paracetamol in mice. BMC Pharmacol. 
2010;10:14. doi: 10.1186/1471-2210-10-14.
42. Maas AI, Stocchetti N, Bullock R. Moderate and severe
traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728- 
Alinaghi Langari et al
444 Journal of Kerman University of Medical Sciences. Volume 29, Number 5, 2022
41. doi: 10.1016/s1474-4422(08)70164-9.
43. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka 
A, Manley GT. Classification of traumatic brain injury for 
targeted therapies. J Neurotrauma. 2008;25(7):719-38. doi: 
10.1089/neu.2008.0586.
44. Shin JA, Choi JH, Choi YH, Park EM. Conserved aquaporin 
4 levels associated with reduction of brain edema are 
mediated by estrogen in the ischemic brain after experimental 
stroke. Biochim Biophys Acta. 2011;1812(9):1154-63. doi: 
10.1016/j.bbadis.2011.05.004.
45. Bingham D, Macrae IM, Carswell HV. Detrimental effects 
of 17beta-oestradiol after permanent middle cerebral artery 
occlusion. J Cereb Blood Flow Metab. 2005;25(3):414-20. 
doi: 10.1038/sj.jcbfm.9600031.
46. Carswell HV, Bingham D, Wallace K, Nilsen M, Graham DI, 
Dominiczak AF, et al. Differential effects of 17beta-estradiol 
upon stroke damage in stroke prone and normotensive 
rats. J Cereb Blood Flow Metab. 2004;24(3):298-304. doi: 
10.1097/01.wcb.0000112322.75217.fd.
47. Krause DN, Geary GG, McNeill AM, Ospina J, Duckles SP. 
Impact of hormones on the regulation of cerebral vascular 
tone. Int Congr Ser. 2002;1235:395-9. doi: 10.1016/s0531-
5131(02)00211-x.
48. Walf AA, Koonce CJ, Frye CA. Estradiol or diarylpropionitrile 
administration to wild type, but not estrogen receptor 
beta knockout, mice enhances performance in the object 
recognition and object placement tasks. Neurobiol Learn 
Mem. 2008;89(4):513-21. doi: 10.1016/j.nlm.2008.01.008.
49. Zahedi Asl S, Khaksari M, Siahposht Khachki A, Shahrokhi N, 
Nourizade S. Contribution of estrogen receptors alpha and beta 
in the brain response to traumatic brain injury. J Neurosurg. 
2013;119(2):353-61. doi: 10.3171/2013.4.jns121636.
50. Nakagami F, Nakagami H, Osako MK, Iwabayashi M, Taniyama 
Y, Doi T, et al. Estrogen attenuates vascular remodeling in 
Lp(a) transgenic mice. Atherosclerosis. 2010;211(1):41-7. 
doi: 10.1016/j.atherosclerosis.2010.01.016.
51. Duckles SP, Krause DN. Mechanisms of cerebrovascular 
protection: oestrogen, inflammation and mitochondria. Acta 
Physiol (Oxf). 2011;203(1):149-54. doi: 10.1111/j.1748-
1716.2010.02184.x.
52. Chakrabarti S, Lekontseva O, Davidge ST. Estrogen is 
a modulator of vascular inflammation. IUBMB Life. 
2008;60(6):376-82. doi: 10.1002/iub.48.
53. Dehghan F, Khaksari M, Abbasloo E, Shahrokhi N. The effects 
of estrogen receptors’ antagonist on brain edema, intracranial 
pressure and neurological outcomes after traumatic brain 
injury in rat. Iran Biomed J. 2015;19(3):165-71. doi: 10.7508/
ibj.2015.03.006.
54. Maghool F, Khaksari M, Siahposht Khachki A. Differences in 
brain edema and intracranial pressure following traumatic 
brain injury across the estrous cycle: involvement of female 
sex steroid hormones. Brain Res. 2013;1497:61-72. doi: 
10.1016/j.brainres.2012.12.014.
55. Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram 
G. The brain cytokine levels are modulated by estrogen 
following traumatic brain injury: which estrogen receptor 
serves as modulator? Int Immunopharmacol. 2015;28(1):279-
87. doi: 10.1016/j.intimp.2015.05.046.
56. Thelin EP, Hall CE, Gupta K, Carpenter KLH, Chandran S, 
Hutchinson PJ, et al. Elucidating pro-inflammatory cytokine 
responses after traumatic brain injury in a human stem cell 
model. J Neurotrauma. 2018;35(2):341-52. doi: 10.1089/
neu.2017.5155.
57. Sordillo PP, Sordillo LA, Helson L. Bifunctional role of proinflammatory cytokines after traumatic brain injury. Brain Inj. 
2016;30(9):1043-53. doi: 10.3109/02699052.2016.1163618.
58. Liu F, Chen MR, Liu J, Zou Y, Wang TY, Zuo YX, et al. Propofol 
administration improves neurological function associated 
with inhibition of pro-inflammatory cytokines in adult rats 
after traumatic brain injury. Neuropeptides. 2016;58:1-6. doi: 
10.1016/j.npep.2016.03.004.
59. Conti A, Gulì C, La Torre D, Tomasello C, Angileri FF, 
Aguennouz M. Role of inflammation and oxidative stress 
mediators in gliomas. Cancers (Basel). 2010;2(2):693-712. 
doi: 10.3390/cancers2020693.
60. Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT. 
The role of the nitric oxide pathway in brain injury and its 
treatment--from bench to bedside. Exp Neurol. 2015;263:235-
43. doi: 10.1016/j.expneurol.2014.10.017.
61. Cui C, Song S, Cui J, Feng Y, Gao J, Jiang P. Vitamin D receptor 
activation influences NADPH oxidase (NOX2) activity and 
protects against neurological deficits and apoptosis in a rat 
model of traumatic brain injury. Oxid Med Cell Longev. 
2017;2017:9245702. doi: 10.1155/2017/9245702.
62. Dong J, Wong SL, Lau CW, Lee HK, Ng CF, Zhang L, et al. 
Calcitriol protects renovascular function in hypertension by 
down-regulating angiotensin II type 1 receptors and reducing 
oxidative stress. Eur Heart J. 2012;33(23):2980-90. doi: 
10.1093/eurheartj/ehr459.
63. Groves NJ, McGrath JJ, Burne TH. Vitamin D as a 
neurosteroid affecting the developing and adult brain. 
Annu Rev Nutr. 2014;34:117-41. doi: 10.1146/annurevnutr-071813-105557.
64. AlJohri R, AlOkail M, Haq SH. Neuroprotective role of vitamin 
D in primary neuronal cortical culture. eNeurologicalSci. 
2019;14:43-8. doi: 10.1016/j.ensci.2018.12.004.
65. Anjum I, Jaffery SS, Fayyaz M, Samoo Z, Anjum S. The role 
of vitamin D in brain health: a mini literature review. Cureus. 
2018;10(7):e2960. doi: 10.7759/cureus.2960.
66. Kalueff AV, Eremin KO, Tuohimaa P. Mechanisms of 
neuroprotective action of vitamin D3. Biochemistry (Mosc). 
2004;69(7):738-41. doi: 10.1023/b:biry.0000040196.65686
.2f.
67. Gezen-Ak D, Dursun E, Yilmazer S. Vitamin D inquiry in 
hippocampal neurons: consequences of vitamin D-VDR 
pathway disruption on calcium channel and the vitamin D 
requirement. Neurol Sci. 2013;34(8):1453-8. doi: 10.1007/
s10072-012-1268-6.
68. Cui C, Cui J, Jin F, Cui Y, Li R, Jiang X, et al. Induction of 
the vitamin D receptor attenuates autophagy dysfunctionmediated cell death following traumatic brain injury. 
Cell Physiol Biochem. 2017;42(5):1888-96. doi: 
10.1159/000479571.
69. Cekic M, Sayeed I, Stein DG. Combination treatment with 
progesterone and vitamin D hormone may be more effective 
than monotherapy for nervous system injury and disease. 
Front Neuroendocrinol. 2009;30(2):158-72. doi: 10.1016/j.
yfrne.2009.04.002.
70. Cekic M, Cutler SM, VanLandingham JW, Stein DG. Vitamin D 
deficiency reduces the benefits of progesterone treatment after 
brain injury in aged rats. Neurobiol Aging. 2011;32(5):864-
74. doi: 10.1016/j.neurobiolaging.2009.04.017.
71. Imazeki I, Matsuzaki J, Tsuji K, Nishimura T. 
Immunomodulating effect of vitamin D3 derivatives on 
type-1 cellular immunity. Biomed Res. 2006;27(1):1-9. doi: 
10.2220/biomedres.27.1.
72. Mahon BD, Wittke A, Weaver V, Cantorna MT. The targets of 
vitamin D depend on the differentiation and activation status 
of CD4 positive T cells. J Cell Biochem. 2003;89(5):922-32. 
doi: 10.1002/jcb.10580.
73. Chabas JF, Alluin O, Rao G, Garcia S, Lavaut MN, Risso JJ, et 
al. Vitamin D2 potentiates axon regeneration. J Neurotrauma. 
Journal of Kerman University of Medical Sciences. Volume 29, Number 5, 2022 445
Vitamin D and estrogen combination in traumatic brain injury
2008;25(10):1247-56. doi: 10.1089/neu.2008.0593.
74. Yalbuzdag SA, Sarifakioglu B, Afsar SI, Celik C, Can A, Yegin 
T, et al. Is 25(OH)D associated with cognitive impairment 
and functional improvement in stroke? A retrospective 
clinical study. J Stroke Cerebrovasc Dis. 2015;24(7):1479-86. 
doi: 10.1016/j.jstrokecerebrovasdis.2015.03.007.
75. Cekic M, Stein DG. Progesterone treatment for brain injury: 
an update. Future Neurol. 2010;5(1):37-46. doi: 10.2217/
fnl.09.72.
76. Chen Y, Liu W, Sun T, Huang Y, Wang Y, Deb DK, et al. 
1,25-Dihydroxyvitamin D promotes negative feedback 
regulation of TLR signaling via targeting microRNA-155-
SOCS1 in macrophages. J Immunol. 2013;190(7):3687-95. 
doi: 10.4049/jimmunol.1203273.
77. Aparna R, Subhashini J, Roy KR, Reddy GS, Robinson M, 
Uskokovic MR, et al. Selective inhibition of cyclooxygenase-2 
(COX-2) by 1alpha,25-dihydroxy-16-ene-23-yne-vitamin 
D3, a less calcemic vitamin D analog. J Cell Biochem. 
2008;104(5):1832-42. doi: 10.1002/jcb.21749.