Preview

Пародонтология

Расширенный поиск

Значение Veillonella в микробиоме полости рта и ее влияние на патологию зубов и пародонта. Обзор литературы

https://doi.org/10.33925/1683-3759-2023-792

Аннотация

Актуальность. Вейлонеллы связаны с заболеваниями полости рта. Представители этого рода занимают значительную долю в составе микробиоты зубного налета (бляшки) и участвуют в формировании пищевых цепей и регуляции pH микробиома полости рта.

Целью данной статьи является предоставление обзора научных исследований, посвященных положению таксономической группы вейлонелл в микробиоме полости рта и их возможном влиянии на развитие инфекционных заболеваний полости рта.

Материалы и методы. Был проведен научный поиск в базах данных MEDLINE, EMBASE, NCBI, Web of Science, PubMed, Scopus и eLibrary.RU за последние 40 лет. Были проанализированы 88 источников на английском языке, 1 на русском языке.

Результаты. Различные виды Veillonella способствуют адгезии Streptococcus mutans и метаболизируют лактат, вырабатываемом стрептококками. Они также играют важную роль в формировании микробной биопленки пародонта, вступая в коагрегацию с первичными, промежуточными и поздними колонизаторами, в том числе с такими пародонтопатогенами, как Fusobacterium nucleatum и Porphyromonas gingivalis. Вейлонеллы участвуют в образовании липополисахаридов и сероводорода при пульпите, периапикальном периодонтите и галитозе.

Заключение. Veillonella spp. является важным компонентом микробиома полости рта и может рассматриваться как стабилизирующий компонент и как индикатор нарушений метаболической ситуации в экосистеме ниши.

Об авторах

Т. Р. Саганова
Московский государственный медико-стоматологический университет имени А. И. Евдокимова
Россия

Москва



В. Н. Царев
Московский государственный медико-стоматологический университет имени А. И. Евдокимова
Россия

Москва



А. Б. Джанни
Университет Милана
Италия

Милан



Л. Синьорини
Университет Милана
Италия

Милан



Э. Кавалле
Университет Милана-Бикокка
Италия

Милан



Список литературы

1. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. Bacterial interactions and successions during plaque development. Periodontol 2000. 2006;42:47-79. doi: 10.1111/j.1600-0757.2006.00187.x

2. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol. 2010;8(7):471-480. doi: 10.1038/nrmicro2381

3. Kolenbrander PE. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu Rev Microbiol. 1988;42:627-656. doi: 10.1146/annurev.mi.42.100188.003211

4. Kolenbrander PE. Oral microbial communities: biofilms, interactions, and genetic systems. Annual review of microbiology. 2000;54:413-437. doi: 10.1146/annurev.micro.54.1.413

5. Nyvad B, Kilian M. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scandinavian journal of dental research. 1987;95(5):369-380. doi: 10.1111/j.1600-0722.1987.tb01627.x

6. Gronow S, Welnitz S, Lapidus A, Nolan M, Ivanova N, Del Rio TG, et al. Complete genome sequence of Veillonella parvula type strain (Te3). Standards in genomic sciences. 2010;2(1):57-65. doi: 10.4056/sigs.521107

7. Mashima I, Kamaguchi A, Miyakawa H, Nakazawa F. Veillonella tobetsuensis sp. nov., an anaerobic, gram-negative coccus isolated from human tongue biofilms. International journal of systematic and evolutionary microbiology. 2013;63(Pt 4):1443-1449. doi: 10.1099/ijs.0.042515-0

8. Tyrrell KL, Citron DM, Warren YA, Nachnani S, Goldstein EJ. Anaerobic bacteria cultured from the tongue dorsum of subjects with oral malodor. Anaerobe. 2003;9(5):243-246. doi: 10.1016/S1075-9964(03)00109-4

9. Washio J, Sato T, Koseki T, Takahashi N. Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. Journal of medical microbiology. 2005;54(Pt 9):889-895. doi: 10.1099/jmm.0.46118-0

10. Becker MR, Paster BJ, Leys EJ, et al. Molecular analysis of bacterial species associated with childhood caries. Journal of clinical microbiology. 2002;40(3):1001-1009. doi: 10.1128/JCM.40.3.1001-1009.2002

11. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. Journal of clinical microbiology. 2005;43(11):5721-5732. doi: 10.1128/JCM.43.11.5721-5732.2005

12. Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of clinical microbiology. 2008;46(4):1407-1417. doi: 10.1128/JCM.01410-07

13. Ng SK, Hamilton IR. Lactate metabolism by Veillonella parvula. Journal of bacteriology. 1971;105(3):999-1005. doi: 10.1128/jb.105.3.999-1005.1971

14. Rogosa M, Bishop FS. The genus veillonella. II. Nutritional studies. Journal of bacteriology. 1964;87(3):574-580. doi: 10.1128/jb.87.3.574-580.1964

15. Davidson AL, Chen J. ATP-binding cassette transporters in bacteria. Annual review of biochemistry. 2004;73:241-268. doi: 10.1146/annurev.biochem.73.011303.073626

16. Gerardu V, Heijnsbroek M, Buijs M, van der Weijden F, Ten Cate B, van Loveren C. Comparison of Clinpro Cario L-Pop estimates with CIA lactic acid estimates of the oral microflora. European journal of oral sciences. 2006;114(2):128-132. doi: 10.1111/j.1600-0722.2006.00345.x

17. Gerardu VA, van Loveren C, Heijnsbroek M, Buijs MJ, van der Weijden GA, ten Cate JM. Effects of various rinsing protocols after the use of amine fluoride/stannous fluoride toothpaste on the acid production of dental plaque and tongue flora. Caries research. 2006;40(3):245-250. doi: 10.1159/000092233

18. Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10):e47722. doi: 10.1371/journal.pone.0047722

19. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. Journal of clinical periodontology. 1998;25(2):134-144. doi: 10.1111/j.1600-051x.1998.tb02419.x

20. Chalmers NI, Palmer RJ Jr, Cisar JO, Kolenbrander PE. Characterization of a Streptococcus sp. Veillonella sp. community micromanipulated from dental plaque. Journal of bacteriology. 2008;190(24):8145-8154. doi: 10.1128/JB.00983-08

21. Periasamy S, Kolenbrander PE. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. Journal of bacteriology. 2010;192(12):2965-2972. doi: 10.1128/JB.01631-09

22. Zhou P, Liu J, Merritt J, Qi F. A YadA-like autotransporter, Hag1 in Veillonella atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, Porphyromonas gingivalis, and human oral buccal cells. Molecular oral microbiology. 2015;30(4):269-279. doi: 10.1111/omi.12091

23. Царев ВН, Ипполитов Е.В. Экспериментальная модель для лечения пародонтита с использованием эубиотических штаммов Veillonella parvula и Streptococcus salivarius. Национальные приоритеты России. 2013;(2):139-141. Режим доступа: https://cyberleninka.ru/article/n/eksperimentalnayamodel-dlya-lecheniya-parodontita-s-ispolzovaniem-eubioticheskih-shtammov-veillonella-parvula-i-streptococcus

24. Hughes CV, Kolenbrander PE, Andersen RN, Moore LV. Coaggregation properties of human oral Veillonella spp.: relationship to colonization site and oral ecology. Applied and environmental microbiology. 1988;54(8):1957-1963. doi: 10.1128/aem.54.8.1957-1963.1988

25. Distler W, Kröncke A. Acid formation by mixed cultures of cariogenic strains of Streptococcus mutans and Veillonella alcalescens. Archives of oral biology. 1980;25(10):655-658. doi: 10.1016/0003-9969(80)90096-5

26. Mikx FH, Van der Hoeven JS. Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Archives of oral biology. 1975;20(7):407-410. doi: 10.1016/0003-9969(75)90224-1

27. Egland PG, Palmer RJ Jr, Kolenbrander PE. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(48):16917-16922. doi: 10.1073/pnas.0407457101

28. Kolenbrander PE. Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. International journal of oral science. 2011;3(2):49-54. doi: 10.4248/IJOS11025

29. Valm AM, Mark Welch JL, Rieken CW, Hasegawa Yu, Sogin ML, Oldenbourg R et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(10):4152-4157. doi: 10.1073/pnas.1101134108

30. Seneviratne CJ, Zhang CF, Samaranayake LP. Dental plaque biofilm in oral health and disease. Chinese Journal of Dental Research. 2011;14(2):87-94. Available from: https://pubmed.ncbi.nlm.nih.gov/22319749/

31. Kazor CE, Mitchell PM, Lee AM, Srokes LN, Loesche WJ, Dewhirst FE, et al. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. Journal of clinical microbiology. 2003;41(2):558-563. doi: 10.1128/JCM.41.2.558-563.2003

32. Persson S, Edlund MB, Claesson R, Carlsson J. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral microbiology and immunology. 1990;5(4):195-201. doi: 10.1111/j.1399-302x.1990.tb00645.x

33. Yaegaki K, Sanada K. Biochemical and clinical factors influencing oral malodor in periodontal patients. Journal of periodontology. 1992;63(9):783-789. doi: 10.1902/jop.1992.63.9.783

34. Faveri M, Feres M, Shibli JA, Hayacibara RF, Hayacibara MM, de Figueiredo LC. Microbiota of the dorsum of the tongue after plaque accumulation: an experimental study in humans. Journal of periodontology. 2006;77(9):1539-1546. doi: 10.1902/jop.2006.050366

35. Tyrrell KL, Citron DM, Warren YA, Nachnani S, Goldstein EJ. Anaerobic bacteria cultured from the tongue dorsum of subjects with oral malodor. Anaerobe. 2003;9(5):243-246. doi: 10.1016/S1075-9964(03)00109-4

36. Fukamachi H, Nakano Y, Okano S, Shibata Y, Abiko Y, Yamashita Y. High production of methyl mercaptan by Lmethionine-alpha-deamino-gamma-mercaptomethane lyase from Treponema denticola. Biochemical and biophysical research communications. 2005;331(1):127-131. doi: 10.1016/j.bbrc.2005.03.139

37. Shibuya, K. Constituents and origins of physiological malodor. J. Dent. Health, 2001;51:778. doi: 10.5834/jdh.51.5_778.

38. Paryavi-Gholami F, Minah GE, Turng BF. Oral malodor in children and volatile sulfur compound-producing bacteria in saliva: preliminary microbiological investigation. Pediatric dentistry. 1999;21(6):320-324. Available from: https://pubmed.ncbi.nlm.nih.gov/10509331/

39. Ikawa K, Iwakura M, Washio J, Kusano A, Tanda N, Koseki T. Circadian changes of volatile sulfur compounds measured by Breathtron TM. International Congress Series. 2005;1284:89–90. doi: 10.1016/j.ics.2005.06.008.

40. Washio J, Shimada Y, Yamada M, Sakamaki R, Takahashi N. Effects of pH and lactate on hydrogen sulfide production by oral Veillonella spp. Applied and environmental microbiology. 2014;80(14):4184-4188. doi: 10.1128/AEM.00606-14

41. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Science translational medicine. 2014;6(237):237ra65. doi: 10.1126/scitranslmed.3008599

42. Bearfield C, Davenport ES, Sivapathasundaram V, Allaker RP. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG: an international journal of obstetrics and gynaecology. 2002;109(5):527-533. doi: 10.1111/j.1471-0528.2002.01349.x

43. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Nitert MD. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Scientific reports. 2017;7(1):2860. doi: 10.1038/s41598-017-03066-4

44. Mason MR, Chambers S, Dabdoub SM, Thikkurissy S, Kumar PS. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome. 2018;6(1):67. doi: 10.1186/s40168-018-0443-2

45. Nelson-Filho P, Borba IG, Mesquita KS, Silva RA, Queiroz AM, Silva LA. Dynamics of microbial colonization of the oral cavity in newborns. Brazilian dental journal. 2013;24(4):415-419. doi: 10.1590/0103-6440201302266

46. Rotimi VO, Duerden BI. The development of the bacterial flora in normal neonates. Journal of medical microbiology. 1981;14(1):51-62. doi: 10.1099/00222615-14-1-51

47. Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems. 2018;3(3):e00140-17. doi: 10.1128/mSystems.00140-17

48. Hartz LE, Bradshaw W, Brandon DH. Potential NICU Environmental Influences on the Neonate's Microbiome: A Systematic Review. Advances in neonatal care : official journal of the National Association of Neonatal Nurses. 2015;15(5):324-335. doi: 10.1097/ANC.0000000000000220

49. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidago G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(26):11971-11975. doi: 10.1073/pnas.1002601107

50. Xiao J, Grier A, Faustoferri RC, et al. Association between Oral Candida and Bacteriome in Children with Severe ECC. Journal of dental research. 2018;97(13):1468-1476. doi: 10.1177/0022034518790941

51. Hurley E, Mullins D, Barrett MP, et al. The microbiota of the mother at birth and its influence on the emerging infant oral microbiota from birth to 1 year of age: a cohort study. Journal of oral microbiology. 2019;11(1):1599652. doi: 10.1080/20002297.2019.1599652

52. Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a Resource for the Microbiome of the Human Aerodigestive Tract. mSystems. 2018;3(6):e00187-18. doi: 10.1128/mSystems.00187-18

53. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Distribution of selected bacterial species on intraoral surfaces. Journal of clinical periodontology. 2003;30(7):644-654. doi: 10.1034/j.1600-051x.2003.00376.x

54. Hugoson A, Koch G, Helkimo AN, Lundin SA. Caries prevalence and distribution in individuals aged 3-20 years in Jönköping, Sweden, over a 30-year period (1973-2003). International journal of paediatric dentistry. 2008;18(1):18-26. doi: 10.1111/j.1365-263X.2007.00874.x

55. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. Journal of clinical periodontology. 2017;44 Suppl 18:S12-S22. doi: 10.1111/jcpe.12679

56. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. Journal of dental research. 2011;90(3):294-303. doi: 10.1177/0022034510379602

57. Bradshaw DJ, McKee AS, Marsh PD. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. Journal of dental research. 1989;68(9):1298-1302. doi: 10.1177/00220345890680090101

58. Tsutsumi K, Maruyama M, Uchiyama A, Shibasaki K. Characterisation of a sucrose-independent in vitro biofilm model of supragingival plaque. Oral diseases. 2018;24(3):465-475. doi: 10.1111/odi.12779

59. Marsh PD. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Advances in dental research. 2018;29(1):60-65. doi: 10.1177/0022034517735295

60. Esberg A, Haworth S, Hasslöf P, Lif Holgerson P, Johansson I. Oral Microbiota Profile Associates with Sugar Intake and Taste Preference Genes. Nutrients. 2020;12(3):681 doi: 10.3390/nu12030681

61. Tanner ACR, Kressirer CA, Rothmiller S, Johansson I, Chalmers NI. The Caries Microbiome: Implications for Reversing Dysbiosis. Advances in dental research. 2018;29(1):78-85. doi: 10.1177/0022034517736496

62. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. Journal of clinical microbiology. 2005;43(8):3944-3955. doi: 10.1128/JCM.43.8.3944-3955.2005

63. Gross EL, Leys EJ, Gasparovich SR, et al. Bacterial 16S sequence analysis of severe caries in young permanent teeth. Journal of clinical microbiology. 2010;48(11):4121-4128. doi: 10.1128/JCM.01232-10

64. Okahashi N, Nakata M, Sumitomo T, Terao Y, Kawabata S. Hydrogen peroxide produced by oral Streptococci induces macrophage cell death. PLoS One. 2013;8(5):e62563. doi: 10.1371/journal.pone.0062563

65. Chen L, Ge X, Dou Y, Wang X, Patel JR, Xu P. Identification of hydrogen peroxide production-related genes in Streptococcus sanguinis and their functional relationship with pyruvate oxidase. Microbiology (Reading). 2011;157(Pt 1):13-20. doi: 10.1099/mic.0.039669-0

66. Coykendall AL. Classification and identification of the viridans streptococci. Clinical microbiology reviews. 1989;2(3):315-328. doi: 10.1128/CMR.2.3.315

67. Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. Journal of bacteriology. 2008;190(13):4632-4640. doi: 10.1128/JB.00276-08

68. Hughes CV, Roseberry CA, Kolenbrander PE. Isolation and characterization of coaggregation-defective mutants of Veillonella atypica. Archives of oral biology. 1990;35 Suppl:123S-125S. doi: 10.1016/0003-9969(90)90141-v

69. Liu J, Wu C, Huang IH, Merritt J, Qi F. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology (Reading). 2011;157(Pt 9):2433-2444. doi: 10.1099/mic.0.048314-0

70. Zhou P, Li X, Huang IH, Qi F. Veillonella Catalase Protects the Growth of Fusobacterium nucleatum in Microaerophilic and Streptococcus gordonii-Resident Environments. Applied and environmental microbiology. 2017;83(19):e01079-17. doi: 10.1128/AEM.01079-17

71. Kraus FW, Nickerson JF, Perry WI, Walker AP. Peroxide and peroxidogenic bacteria in human saliva. Journal of bacteriology. 1957;73(6):727-735. doi: 10.1128/jb.73.6.727-735.1957

72. Zhou P, Li X, Qi F. Establishment of a counter-selectable markerless mutagenesis system in Veillonella atypica. Journal of microbiological methods. 2015;112:70-72. doi: 10.1016/j.mimet.2015.03.010

73. Zhou P, Li X, Qi F. Identification and characterization of a haem biosynthesis locus in Veillonella. Microbiology (Reading). 2016;162(10):1735-1743. doi: 10.1099/mic.0.000366

74. Marsh PD. Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health. 2006;6 Suppl 1(Suppl 1):S14. doi: 10.1186/1472-6831-6-S1-S14

75. Marsh PD, Bradshaw DJ. Dental plaque as a biofilm. Journal of industrial microbiology. 1995;15(3):169-175. doi: 10.1007/BF01569822

76. Marsh PD. Microbiologic aspects of dental plaque and dental caries. Dental Clinics of North America. 1999;43(4):599-614. Available from: https://pubmed.ncbi.nlm.nih.gov/10553246/

77. Tian L, Sato T, Niwa K, et al. PCR-dipstick DNA chromatography for profiling of a subgroup of caries-associated bacterial species in plaque from healthy coronal surfaces and periodontal pockets. Biomedical research (Tokyo, Japan). 2016;37(1):29-36. doi: 10.2220/biomedres.37.29

78. Marsh PD. Are dental diseases examples of ecological catastrophes? Microbiology (Reading). 2003;149(Pt 2):279-294. doi: 10.1099/mic.0.26082-0

79. Ximénez-Fyvie LA, Haffajee AD, Socransky SS. Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. Journal of clinical periodontology. 2000;27(10):722-732. doi: 10.1034/j.1600-051x.2000.027010722.x

80. López R, Dahlén G, Retamales C, Baelum V. Clustering of subgingival microbial species in adolescents with periodontitis. European journal of oral sciences. 2011;119(2):141-150. doi: 10.1111/j.1600-0722.2011.00808.x

81. Ximénez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. Journal of clinical periodontology. 2000;27(9):648-657. doi: 10.1034/j.1600-051x.2000.027009648.x

82. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Distribution of selected bacterial species on intraoral surfaces. Journal of clinical periodontology. 2003;30(7):644-654. doi: 10.1034/j.1600-051x.2003.00376.x

83. Kumar PS, Leys EJ, Bryk JM, Martinez FJ, Moeschberger ML, Griffen AL. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. Journal of clinical microbiology. 2006;44(10):3665-3673. doi: 10.1128/JCM.00317-06

84. Stingu CS, Jentsch H, Eick S, Schaumann R, Knöfler G, Rodloff A. Microbial profile of patients with periodontitis compared with healthy subjects. Quintessence international. 2012;43(2):e23-e31. Available from: https://pubmed.ncbi.nlm.nih.gov/22257880/

85. Tsarev VN, Ippolitov EV. Eksperimental'naya model' dlya lecheniya parodontita s ispol'zovaniem eubioticheskih shtammov Veillonella parvula i Streptococcus salivarius. Nacionalʹnye prioritety Rossii. 2013;(2):139-141 (In Russ.). Available from: https://cyberleninka.ru/article/n/eksperimentalnayamodel-dlya-lecheniya-parodontita-s-ispolzovaniem-eubioticheskih-shtammov-veillonella-parvula-i-streptococcus

86. Diaz PI, Hoare A, Hong BY. Subgingival Microbiome Shifts and Community Dynamics in Periodontal Diseases. Journal of the California Dental Association. 2016;44(7):421-435. Available from: https://pubmed.ncbi.nlm.nih.gov/27514154/

87. Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Molecular oral microbiology. 2014;29(6):248-257. doi: 10.1111/omi.12065

88. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nature reviews. Microbiology. 2018;16(12):745-759. doi: 10.1038/s41579-018-0089-x

89. Shah SA, Ganesan SM, Varadharaj S, Dabdoub SM, Walters JD, Kumar PS. The making of a miscreant: tobacco smoke and the creation of pathogen-rich biofilms. NPJ biofilms and microbiomes. 2017;3:26 doi: 10.1038/s41522-017-0033-2


Рецензия

Для цитирования:


Саганова Т.Р., Царев В.Н., Джанни А.Б., Синьорини Л., Кавалле Э. Значение Veillonella в микробиоме полости рта и ее влияние на патологию зубов и пародонта. Обзор литературы. Пародонтология. 2023;28(3):218-226. https://doi.org/10.33925/1683-3759-2023-792

For citation:


Saganova T.R., Tsarev V.N., Gianni A.B., Signorini L., Cavallé E. The importance of Veillonella in the oral microbiome and its impact on dental and periodontal pathology: a literature review. Parodontologiya. 2023;28(3):218-226. https://doi.org/10.33925/1683-3759-2023-792

Просмотров: 536


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-3759 (Print)
ISSN 1726-7269 (Online)