Next Article in Journal
Calibration Estimation of Cumulative Distribution Function Using Robust Measures
Next Article in Special Issue
Fuzzy Adaptive Parameter in the Dai–Liao Optimization Method Based on Neutrosophy
Previous Article in Journal
Estimation of Ricci Curvature for Hemi-Slant Warped Product Submanifolds of Generalized Complex Space Forms and Their Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Classical Solutions for the Generalized Kawahara–KdV System

1
Department of Differential Equations, Faculty of Mathematics and Informatics, University of Sofia, 1164 Sofia, Bulgaria
2
Dynamic Systems Laboratory, Faculty of Mathematics, University of Science and Technology Houari Boumediene, Bab Ezzouar 16000, Algeria
3
Department of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass 51452, Saudi Arabia
4
Département des Mathématiqus, Université 20 Août 1955 Skikda Bp 26 Route El-Hadaiek, Skikda 21000, Algeria
5
Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University, P.O. Box 5701, Riyadh 11432, Saudi Arabia
6
Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(6), 1159; https://doi.org/10.3390/sym15061159
Submission received: 26 April 2023 / Revised: 10 May 2023 / Accepted: 24 May 2023 / Published: 26 May 2023

Abstract

:
In this article, we investigate the generalized Kawahara–KdV system. A new topological approach is applied to prove the existence of at least one classical solution and at least two non-negative classical solutions. The arguments are based upon recent theoretical results.

1. Introduction

In the present paper, we investigate the Cauchy problem for the generalized Kawahara–KdV system:
t u + k = 0 N 1 l = 0 N 1 k x m = 0 N 1 k x m u p P k , l , m x l v + k = 1 N 2 a k ( t , x ) x 2 k + 1 u = 0 t v + k = 0 N 3 l = 0 N 3 k x k m = 0 N 3 k x m v p Q k , l , m x l u + k = 1 N 4 b k ( t , x ) x 2 k + 1 v = 0 , t [ 0 , ) , x R , u ( 0 , x ) = u 0 ( x ) , v ( 0 , x ) = v 0 ( x ) , x R ,
where
Hypothesis 1.
u 0 , v 0 C q ( R ) 0 u 0 , v 0 B on  R for  B > 1 a j b k C ( [ 0 , ) × R ) 0 | a j | , | b k | B on  [ 0 , ) × R j = 1 , , N 2 k = 1 , , N 4 ,
P k , l , m ( z ) = r = 0 N 5 c k , l , m , r ( t , x ) z r , Q k , l , m ( z ) = r = 0 N 6 d k , l , m , r ( t , x ) z r , t [ 0 , ) , x R , z R ,
c k , l , m , j , d k , l , m , r C ( [ 0 , ) , C q ( R ) ) ,
0 x p 1 c k , l , m , j , x p 1 d k , l , m , r B ,
on  [ 0 , ) × R j = 1 , , N 5 r = 1 , , N 6 p 1 = 1 , , N 1 , p,  N 1 , N 2 , N 3 , N 4 , N 5 , N 6 N ,
q = max { N 1 , 2 N 2 + 1 , N 3 , 2 N 4 + 1 } .
Kondo and Pes [1] proved the local well-posedness of this system in analytic Gevrey spaces  G σ , s ( R ) with  s 2 N + 1 / 2 N = max { N 2 , N 4 } .
The range of the type of equations that this model encompasses is obviously broad and can represent many physical phenomena. As examples, we can consider the nonlinear case
k = 0 N 1 = 0 N 1 k x k m = 0 N 1 k x m w p P k , , m x z .
When  N 1 = 1 , we have
w p P 0 , 0 , 0 ( z ) + x w p P 0 , 0 , 1 ( z ) + w p P 0 , 1 , 0 x z + x w p P 0 , 1 , 1 x z + x w p P 1 , 0 , 0 ( z ) + x w p P 1 , 0 , 1 ( z ) .
When  N 1 = N 2 = 1 and  p = 1 , taking  P 0 , 0 , 0 = P 0 , 1 , 0 = P 0 , 0 , 1 = P 0 , 1 , 1 =   P 1 , 0 , 1 0 , P 1 , 0 , 0 ( x ) = x 2 , a 1 = 1 and taking the same choices to  Q k , , m with  N 3 = N 4 = 1 and  b 1 = 1 , we have a coupled system of modified KdV equations (see [2,3]):
t w + x 3 w + x w z 2 = 0 , t z + x 3 z + x z w 2 = 0 , w ( x , 0 ) = w 0 ( x ) , z ( x , 0 ) = z 0 ( x ) .
Considering in (2) the case when  p = q N and  P 1 , 0 , 0 ( x ) = x q + 1 , since  N 1 = N 2 = N 3 = N 4 = 1 , we obtain a more general system, treated in [4] as
t w + x 3 w + x w q z q + 1 = 0 , t z + x 3 z + x z q w q + 1 = 0 , w ( x , 0 ) = w 0 ( x ) , z ( x , 0 ) = z 0 ( x ) .
In order to find a more general and more complicated systems, we can consider  N 1 = 2 and  p = 1 ; then, we notice that the term nonlinear is more general:
w P 0 , 0 , 0 ( z ) + x w P 0 , 0 , 1 ( z ) + x 2 w P 0 , 0 , 2 ( z ) + w P 0 , 1 , 0 x z + x w P 0 , 1 , 1 x z + x 2 w P 0 , 1 , 2 x z + w P 0 , 2 , 0 x 2 z + x w P 0 , 2 , 1 x 2 z + x 2 w P 0 , 2 , 2 x 2 z + x w P 1 , 0 , 0 ( z ) + x w P 1 , 0 , 1 ( z ) + x 2 w P 1 , 0 , 2 ( z ) + w P 1 , 1 , 0 x z + x w P 1 , 1 , 1 x z + x 2 w P 1 , 1 , 2 x z + x 2 w P 2 , 0 , 0 ( z ) + x w P 2 , 0 , 1 ( z ) + x 2 w P 2 , 0 , 2 ( z ) .
If we change z by w, and consider again all identical null polynomials, except  P 0 , 0 , 1 ( x ) = x k , we obtain the Kawahara system [5]
t u + x 3 u + x 5 u + u k x u = 0 .
The study of nonlinear partial differential equations (PDEs) has garnered significant attention in recent years due to their wide-ranging applications in various fields such as fluid dynamics, plasma physics, and optical communications [6,7,8]. In particular, fractional-order PDEs, which generalize classical PDEs by incorporating nonlocal effects, have been the subject of extensive research, including the analysis of the Kaup–Kupershmidt equation and Korteweg–De Vries (KdV)-type equations within different operators [6,7]. Additionally, the investigation of nonlinear wave phenomena in plasma and fluid systems has led to the development of analytical solutions for various nonlinear PDEs, such as the nonlinear Schrodinger equation with a detuning term [8].
Shah et al. [6] conducted a comparative analysis of the fractional-order Kaup–Kupershmidt equation using different operators, offering valuable insights into the behavior of the equation and its solutions. Similarly, Shah et al. [7] explored the analytical investigation of fractional-order KdV-type equations under the Atangana–Baleanu–Caputo operator, focusing on the modeling of nonlinear waves in plasma and fluid systems. Furthermore, Shah et al. [8] analyzed optical solitons for the nonlinear Schrodinger equation with a detuning term using the iterative transform method, which has important implications for the understanding and control of optical communication systems.
Building on these foundational studies, our research aims to further advance the understanding of nonlinear PDEs by applying a novel topological approach to the generalized Kawahara–KdV system. We seek to demonstrate the existence of classical and non-negative solutions, thus contributing to the broader knowledge of nonlinear PDEs and their applications in various scientific and engineering contexts.
Theorem 1.
We suppose that Hypothesis 1 holds. Then, the initial value problem (1) has at least one solution
( u , v ) ( C 1 ( [ 0 , ) , C q ( R ) ) ) 2 .
Theorem 2.
We suppose that Hypothesis 1 holds. Then, the initial value problem (1) has at least two non-negative solutions
( u 1 , v 1 ) , ( u 2 , v 2 ) ( C 1 ( [ 0 , ) , C q ( R ) ) ) 2 .
We organized the paper as follows. In the second section, we introduce and state some auxiliary results related the to our system and its symmetrical problem. In the next Section 3, we prove Theorem 1 for the existence of at least one solution. In Section 4, we show the existence of at least two non-negative solutions in in Theorem 2. In Section 5, we introduce an example illustrating the main results.

2. Preliminary Results

In order to prove the existence of the solution, we shall use the following fixed-point Theorem.
Theorem 3.
Let  0 < ϵ > 0 B > 0 E be a Banach space and
W = { x E : x B } .
Let also  T x = ϵ x x W S : W E be a continuous function,  ( I S ) ( W ) reside in a compact subset of  E , and
{ x E : x = λ ( I S ) x , x = B } = , λ 0 , 1 ϵ .
Then, there exists  x * W such that
T x * + S x * = 0 .
Proof. 
Define
r 1 ϵ x = 1 ϵ x , if B ϵ x B x x , if B ϵ < x .
Then,
r 1 ϵ ( I S ) : W W
is compact and continuous. Thus, owing to the Schauder fixed-point theorem, it follows that there exists  x * W such that
r 1 ϵ ( I S ) x * = x * .
Assume that  1 ϵ ( I S ) x * W . Thus,
B ϵ < ( I S ) x * , B ( I S ) x * 1 < 1 ϵ ,
and
x * = B ( I S ) x * 1 ( I S ) x * = r 1 ϵ ( I S ) x * .
Then,  x * = B contradicts (3). Thus,  1 ϵ ( I S ) x * W and
x * = r 1 ϵ ( I S ) x * = 1 ϵ ( I S ) x * ,
or
ϵ x * + S x * = x * ,
or
T x * + S x * = x * ,
which completes our proof. □
Let  W be a real Banach space.
Definition 1.
A mapping  K : W W is said to be completely continuous if it is continuous and maps bounded sets into relatively compact sets.
The definition of l-set contraction is related to the Kuratowski measure of noncompactness, which we recall for completeness.
Definition 2.
Let  Γ W be the class of all bounded sets of  W . The Kuratowski measure of noncompactness
α : Γ W [ 0 , )
is defined by
α ( ϱ ) = inf δ > 0 : ϱ = j = 1 m ϱ j a n f d i a m ( ϱ j ) δ , j = 1 , , m ,
where
d i a m ( ϱ j ) = sup { x y W : x , y ϱ j } ,
is the diameter of  ϱ j j = 1 , , m .
We refer the reader to [9] for the main symmetrical properties of the measure of noncompactness.
Definition 3.
A mapping  A : W W is said to be an l-set contraction if it is continuous, bounded, and there exists a constant  0 l such that
β ( A ( Z ) ) l β ( Z )
for any bounded set  Z W . The mapping  A is said to be a strict set contraction if  1 > l .
If  A : W W is a completely continuous mapping, then  A is 0-set contraction (see [10] (p. 264)).
Definition 4.
Let  W and  Z be real Banach spaces. A mapping  A : W Z is said to be expansive if there exists a constant  α > 1 such that
A x A z Z α x z W , x , z W .
Definition 5.
A closed, convex set ϖ in ϱ is said to be cone if
1. 
β y ϖ  for any  β 0 and for any  y ϖ ;
2. 
y , y ϖ implies  y = 0 .
Let us denote  ϖ * = ϖ { 0 } .
Lemma 1.
Let ϱ be a convex closed subset of a Banach space  E and  X ϱ be a bounded open subset where  0 X . For small enough values of  ε > 0 , let  A : X ¯ ϱ be a strict k-set contraction that satisfies
A y { y , λ y } , y X , λ 1 + ε .
Thus,  i ( A , X , ϱ ) = 1 .
Proof. 
Let the homotopic deformation be
H : [ 0 , 1 ] × X ¯ ϱ ,
defined by
H ( t , y ) = 1 ε + 1 t A y .
For each  y , the operator  H is continuous and uniformly continuous in t, where  H ( t , . ) is a strict set contraction for each  t [ 0 , 1 ] . Notice that  H ( t , . ) has no fixed point on  X . On the contrary,
  • If  t = 0 y 0 X such that  y 0 = 0 , contradicting  y 0 X .
  • If  t ( 0 , 1 ] y 0 P X such that  1 ε + 1 t A y 0 = y 0 ; then,  A y 0 = 1 + ε t y 0 with  1 + ε t 1 + ε , contradicting the assumption. From the invariance under homotopy and the normalization symmetrical properties of the index, we deduce
i ( 1 ε + 1 A , X , ϱ ) = i ( 0 , X , ϱ ) = 1 .
We show that
i ( A , X , ϱ ) = i ( 1 ε + 1 A , X , ϱ ) .
Then,
1 ε + 1 A y y , y X .
Thus,  γ > 0 so that
y 1 ε + 1 A y γ , y X .
We have  1 ϵ + 1 A y A y as  ϵ 0 , for  x X ¯ .
So, for small enough  ε ,
A y 1 ε + 1 A y < γ 2 , y X .
Let us define the convex deformation  F : [ 0 , 1 ] × X ¯ ϱ by
F ( t , y ) = t A y + ( 1 t ) 1 ε + 1 A y .
For all x, F is continuous, and uniformly continuous in t. The mapping  F ( t , . ) is a strict set contraction  t [ 0 , 1 ] . We mention that  F ( t , . ) has no fixed point on  X . We have  x X , and thus we have
y F ( t , y ) = y t A y ( 1 t ) 1 ε + 1 A y y 1 ε + 1 A y t A y 1 ε + 1 A y > γ γ 2 > γ 2 ,
According to the invariance properties, the homotopy of the index ensures the claim. □

3. Proof of Theorem 1

Let  W 1 = C 1 ( [ 0 , ) , C q ( R ) ) be a space endowed with
u 2 = max { sup t [ 0 , ) , x R | u | , sup t [ 0 , ) , x R | t u | , sup t [ 0 , ) , x R | x j u | , j { 1 , , q } } ,
provided it exists. Define  W = W 1 × W 1 with
( u , v ) = max { u 2 , v 2 } .
We define for  ( u , v ) W
Q 1 ( u , v ) = k = 0 N 1 l = 0 N 1 k x m = 0 N 1 k x m u p P k , l , m x l v , Q 2 ( u , v ) = k = 0 N 3 l = 0 N 3 k x k m = 0 N 3 k x m v p Q k , l , m x l u , t [ 0 , ) , x R .
Then, the IVP (1) can be rewritten as
t u + Q 1 ( u , v ) + k = 1 N 2 a k ( t , x ) + x 2 k + 1 u = 0 , t v + Q 2 ( u , v ) + k = 1 N 4 b k ( t , x ) x 2 k + 1 v = 0 , t [ 0 , ) , x R , u ( 0 , x ) = u 0 ( x ) , v ( 0 , x ) = v 0 ( x ) , x R .
Let
C 1 = { k = 0 N 1 l = 0 N 1 k m = 0 N 1 k r = 0 k k r ( k r + m ) ! 2 p ! B p j = 0 N 5 i = 0 r r i ( i ! ) 2 j ! B j + 1 , k = 0 N 3 l = 0 N 3 k m = 0 N 3 k r = 0 k k r ( k r + m ) ! 2 p ! B p j = 0 N 6 i = 0 r r i ( i ! ) 2 j ! B j + 1 } .
Lemma 2.
Suppose  ( ( H y p 1 ) . If  ( u , v ) W and  ( u , v ) B , then
| Q 1 ( u , v ) | , | Q 2 ( u , v ) | C 1 , t [ 0 , ) , x R .
Proof. 
We have
x m = 0 N 1 k x m u p P k , l , m x l v =   m = 0 N 1 k x k x m u p P k , l , m x l v =   m = 0 N 1 k r = 0 k k r x k r + m u p x r P k , l , m x l v =   m = 0 N 1 k r = 0 k k r x k r + m u p x r j = 0 N 5 c k , l , m , j x l v j =   m = 0 N 1 k r = 0 k k r x k r + m u p j = 0 N 5 i = 0 r r i x r i c k , l , m , j x î x l v j ,
k N 0 k N 1 . Since  B > 1 , we have
x r 1 u r 2 ( r 1 ! ) 2 r 2 ! B r 2 ,
for any  r 1 , r 2 N r 1 q . Then,
x m = 0 N 1 k x m u p P k , l , m x l v   m = 0 N 1 k r = 0 k k r x k r + m u p j = 0 N 5 i = 0 r r i x r i c k , l , m , j x i x l v j   m = 0 N 1 k r = 0 k k r ( k r + m ) ! 2 p ! B p j = 0 N 5 i = 0 r r i ( i ! ) 2 j ! B j + 1 ,
on  [ 0 , ) × R 0 k N 1 , and then
| Q 1 ( u , v ) | k = 0 N 1 l = 0 N 1 k m = 0 N 1 k r = 0 k k r ( k r + m ) ! 2 p ! B p j = 0 N 5 i = 0 r r i ( i ! ) 2 j ! B j + 1 C 1 ,
on  [ 0 , ) × R . As above,
| Q 2 ( u , v ) | C 1 ,
on  [ 0 , ) × R . The proof is now completed. □
For  ( u , v ) W , we define the operators
S 1 1 ( u , v ) = u u 0 ( x ) + 0 t Q 1 ( u , v ) ( s , x ) + k = 1 N 2 a k ( s , x ) x 2 k + 1 u ( s , x ) d s , S 1 2 ( u , v ) = v v 0 ( x ) + 0 t Q 2 ( u , v ) ( s , x ) + k = 1 N 4 b k ( s , x ) x 2 k + 1 v ( s , x ) d s , S ( u , v ) = S 1 1 ( u , v ) , S 1 2 ( u , v ) ,
t [ 0 , ) , x R .
Lemma 3.
Suppose  ( ( H y p 1 ) . If  ( u , v ) W satisfies
S 1 ( u , v ) = 0 , t [ 0 , ) , x R ,
then  ( u , v ) is a solution to (1).
Proof. 
We have
0 = u u 0 ( x ) + 0 t Q 1 ( u , v ) ( s , x ) + k = 1 N 2 a k ( s , x ) x 2 k + 1 u ( s , x ) d s , 0 = v v 0 ( x ) + 0 t Q 2 ( u , v ) ( s , x ) + k = 1 N 4 b k ( s , x ) x 2 k + 1 v ( s , x ) d s ,
t [ 0 , ) , x R , where we differentiate with respect to t to have (5). Let  t = 0 in (6). We thus obtain
0 = u ( 0 , x ) u 0 ( x ) 0 = v ( 0 , x ) v 0 ( x ) , x R .
Thus,  ( u , v ) is a solution to (1). The proof is now completed. □
Let
B 1 = max { 2 B , C 1 + N 2 B 2 , C 1 + N 4 B 2 } .
Lemma 4.
Suppose  ( ( H y p 1 ) . If  ( u , v ) W and  ( u , v ) B ; then,
| S 1 1 ( u , v ) | B 1 ( 1 + t ) , | S 1 2 ( u , v ) | B 1 ( 1 + t ) , t [ 0 , ) , x R .
Proof. 
We have
| S 1 1 ( u , v ) | = | u u 0 ( x ) + 0 t Q 1 ( u , v ) ( s , x ) + k = 1 N 2 a k ( s , x ) x 2 k + 1 u ( s , x ) d s | | u | + | u 0 ( x ) | + 0 t | Q 1 ( u , v ) ( s , x ) | + k = 1 N 2 | a k ( s , x ) | | x 2 k + 1 u ( s , x ) | d s 2 B + 0 t ( C 1 + N 2 B 2 ) d s B 1 ( 1 + t ) , t [ 0 , ) , x R .
As above,
| S 1 2 ( u , v ) | B 1 ( 1 + t ) , t [ 0 , ) , x R ,
which completes the proof. □
Let
Hypothesis 2.
There exists a function  g C ( [ 0 , ) × R ) g > 0 on  ( 0 , ) × ( R { 0 } ) g ( 0 , x ) = g ( t , 0 ) = 0 t [ 0 , ) , x R , and  A > 0 such that
q ! · 2 q + 1 ( 1 + t + t 2 ) ( 1 + | x | + + | x | q ) 0 t | 0 x g ( t 2 , x 2 ) d x 2 | d t 2 A ,
t [ 0 , ) , x R .
We will give some examples for g and  A that satisfy Hypothesis 2. For  ( u , v ) W , define the operators
S 2 1 ( u , v ) = 0 t 0 x ( t t 2 ) ( x x 2 ) q g ( t 2 , x 2 ) S 1 1 ( u , v ) ( t 2 , x 2 ) d x 2 d t 2 , S 2 2 ( u , v ) = 0 t 0 x ( t t 2 ) ( x x 2 ) q g ( t 2 , x 2 ) S 1 2 ( u , v ) ( t 2 , x 2 ) d x 2 d t 2 , S 2 ( u , v ) = ( S 2 1 ( u , v ) , S 2 2 ( u , v ) ) , t [ 0 , ) , x R .
Lemma 5.
Suppose Hypothesis 1 and Hypothesis 2. If  ( u , v ) W satisfies
S 2 ( u , v ) = 0 , t [ 0 , ) , x R ,
then  ( u , v ) is a solution to (1).
Proof. 
Differentiating the Equation (5) two times in t and  q + 1 times in x, we have
g ( t , x ) S 1 1 ( u , v ) = g ( t , x ) S 1 2 ( u , v ) = 0 , t [ 0 , ) , x R .
Hence,
S 1 1 ( u , v ) = S 1 2 ( u , v ) = 0 , t , ( 0 , ) , x ( R { 0 } ) .
Since  S 1 1 ( u , v ) ( · , · ) and  S 1 2 ( u , v ) ( · , · ) are continuous functions on  [ 0 , ) × R , we have
0 = S 1 1 ( u , v ) ( 0 , x ) = S 1 2 ( u , v ) ( 0 , x ) = lim t 0 S 1 1 ( u , v ) = lim t 0 S 1 2 ( u , v ) = lim x 0 S 1 1 ( u , v ) = lim x 0 S 1 2 ( u , v ) = S 1 1 ( u , v ) ( t , 0 ) = S 1 2 ( u , v ) ( t , 0 ) , t [ 0 , ) , x R .
Therefore,
S 1 1 ( u , v ) = S 1 2 ( u , v ) = 0 , t [ 0 , ) , x R .
Using Lemma 3, we obtain the main result. □
Lemma 6.
Suppose Hypothesis 1 and Hypothesis 2. If  ( u , v ) W ( u , v ) B , then
S 2 ( u , v ) A B 1 .
Proof. 
The inequality  ( z + w ) r 2 r ( z r + w r ) w , z , q 0 will be used. We have
| S 2 1 ( u , v ) | = | 0 t 0 x ( t t 2 ) ( x x 2 ) q g ( t 2 , x 2 ) S 1 1 ( u , v ) ( t 2 , x 2 ) d x 2 d t 2 | 0 t | 0 x ( t t 2 ) | x x 2 | q g ( t 2 , x 2 ) | S 1 1 ( u , v ) ( t 2 , x 2 ) | d x 2 | d t 2 B 1 0 t | 0 x ( t t 2 ) ( 1 + t 2 ) | x x 2 | q g ( t 2 , x 2 ) d x 2 | d t 2 B 1 t ( 1 + t ) 2 q + 1 | x | q 0 t | 0 x g ( t 2 , x 2 ) d x 2 | d t 2 A B 1 , t [ 0 , ) , x R ,
and
| t S 2 1 ( u , v ) | = | 0 t 0 x ( x x 2 ) q g ( t 2 , x 2 ) S 1 1 ( u , v ) ( t 2 , x 2 ) d x 2 d t 2 | 0 t | 0 x | x x 2 | q g ( t 2 , x 2 ) | S 1 1 ( u , v ) ( t 2 , x 2 ) | d x 2 | d t 2 B 1 0 t | 0 x ( 1 + t 2 ) | x x 2 | q g ( t 2 , x 2 ) d x 2 | d t 2 B 1 ( 1 + t ) 2 q + 1 | x | q 0 t | 0 x g ( t 2 , x 2 ) d x 2 | d t 2 A B 1 , t [ 0 , ) , x R ,
and
| x S 2 1 ( u , v ) | = q | 0 t 0 x ( t t 2 ) ( x x 2 ) q 1 g ( t 2 , x 2 ) S 1 1 ( u , v ) ( t 2 , x 2 ) d x 2 d t 2 | q 0 t | 0 x ( t t 2 ) | x x 2 | q 1 g ( t 2 , x 2 ) | S 1 1 ( u , v ) ( t 2 , x 2 ) | d x 2 | d t 2 q B 1 0 t | 0 x ( t t 2 ) ( 1 + t 2 ) | x x 2 | q 1 g ( t 2 , x 2 ) d x 2 | d t 2 q B 1 t ( 1 + t ) 2 q | x | q 1 0 t | 0 x g ( t 2 , x 2 ) d x 2 | d t 2 A B 1 , t [ 0 , ) , x R ,
and so on. As above,
| S 2 2 ( u , v ) | A B 1 , | t S 2 2 ( u , v ) | A B 1 , | x j S 2 2 ( u , v ) | A B 1 , j { 1 , , q } .
t [ 0 , ) , x R . Thus,
S 2 ( u , v ) A B 1 ,
which completes our proof. □
Suppose
Hypothesis 3.
Let  ϵ ( 0 , 1 ) A B and  B 1 satisfy  ϵ B 1 ( 1 + A ) < 1 and  B > A B 1 .
Let  ϱ ˜ ˜ ˜ denote the set of all equi-continuous in  W with respect to the norm  · . Also let  ϱ ˜ ˜ = ϱ ˜ ˜ ˜ ¯ be the closure of  ϱ ˜ ˜ ˜ , where
ϱ ˜ = ϱ ˜ ˜ { ( u 0 , v 0 ) } ,
and
ϱ = { ( u , v ) ϱ ˜ : ( u , v ) 0 , ( u , v ) B } .
Note that  ϱ is a compact set in  W . For  ( u , v ) W , we define
T ( u , v ) = ϵ ( u , v ) , S ( u , v ) = ( u , v ) + ϵ ( u , v ) + ϵ S 2 ( u , v ) , t [ 0 , ) , x R .
Owing to the Lemma 5, we have f  ( u , v ) ϱ
( I S ) ( u , v ) = ϵ ( u , v ) ϵ S 2 ( u , v ) ϵ ( u , v ) + ϵ S 2 ( u , v ) ϵ B 1 + ϵ A B 1 = ϵ B 1 ( 1 + A ) < B .
Thus,  S : ϱ W is continuous, and  ( I S ) ( ϱ ) resides in a compact subset of  W . One can suppose that  ( u , v ) W such that  ( u , v ) = B and
( u , v ) = λ ( I S ) ( u , v ) ,
or
1 λ ( u , v ) = ( I S ) ( u , v ) = ϵ ( u , v ) ϵ S 2 ( u , v ) ,
or
1 λ + ϵ ( u , v ) = ϵ S 2 ( u , v ) ,
for  λ 0 , 1 ϵ . Then,  S 2 ( u , v )     A B 1   <   B ,
ϵ B < 1 λ + ϵ B = 1 λ + ϵ ( u , v )   =   ϵ S 2 ( u , v )   <   ϵ B .
This is a contradiction. By Theorem 3, we see that  T + S has a fixed point  ( u * , v * ) ϱ . Then,
( u * , v * ) = T ( u * , v * ) + S ( u * , v * ) = ϵ ( u * , v * ) + ( u * , v * ) + ϵ ( u * , v * ) + ϵ S 2 ( u * , v * ) ,
t [ 0 , ) , x R , whereupon
0 = S 2 ( u * , v * ) , t [ 0 , ) , x R .
Owing to the Lemma 5, we have  ( u * , v * ) as a solution to (1), which completes the proof.

4. Proof of Theorem 2

Let  W be the space used in the previous section (see [11]).
Hypothesis 4.
Let  0 < m be large enough and  r , A , B , L , R 1 > 0 satisfy
B R 1 > r , 0 < ϵ , R 1 > 2 5 m + 1 L ,
A B 1 < L 5 .
Define
P ˜ = { ( u , v ) W : 0 ( u , v ) on [ 0 , ) × R } .
We denote by  ϖ the set of all equi-continuous families in  P ˜ . For  ( u , v ) W , define
T 1 ( u , v ) = ( 1 + m ϵ ) ( u , v ) ϵ L 10 , ϵ L 10 , S 3 ( u , v ) = ϵ S 2 ( u , v ) m ϵ ( u , v ) ϵ L 10 , ϵ L 10 ,
t [ 0 , ) . We have any fixed point  ( u , v ) W of the operator  T 1 + S 3 is a solution to (1). Define
X 1 = ϖ r = { ( u , v ) ϖ : ( u , v ) < r } , X 2 = ϖ L = { ( u , v ) ϖ : ( u , v ) < L } , X 3 = ϖ R 1 = { ( u , v ) ϖ : ( u , v ) < R 1 } , R 2 = R 1 + A m B 1 + L 5 m , Γ = ϖ R 2 ¯ = { ( u , v ) ϖ : ( u , v ) R 2 } .
  • For  ( u 1 , v 1 ) , ( u 2 , v 2 ) Γ , we have
    T 1 ( u 1 , v 1 ) T 1 ( u 2 , v 2 )   =   ( 1 + m ε ) ( u 1 , v 1 ) ( u 2 , v 2 ) ,
    where  T 1 : Γ W is an expansive operator with a constant  1 < h = 1 + m ε .
  • For  ( u , v ) ϖ ¯ R 1 , we have
    S 3 ( u , v ) ε S 2 ( u , v ) + m ε ( u , v ) + ε L 10 ε A B 1 + m R 1 + L 10 .
    Then,  S 3 ( ϖ ¯ R 1 ) is uniformly bounded. As  S 3 : ϖ ¯ R 1 W is continuous, we note that  S 3 ( ϖ ¯ R 1 ) is equi-continuous. Then,  S 3 : ϖ ¯ R 1 W is a 0-set contraction.
  • Let  ( u 1 , v 1 ) ϖ ¯ R 1 . Set
    ( u 2 , v 2 ) = ( u 1 , v 1 ) + 1 m S 2 ( u 1 , v 1 ) + L 5 m , L 5 m .
    We have  0 S 2 u 1 + L 5 0 S 2 v 1 + L 5 on  [ 0 , ) × R . We have  0 u 2 , v 2 on  [ 0 , ) × R and
    ( u 2 , v 2 ) ( u 1 , v 1 ) + 1 m S 2 ( u 1 , v 1 ) + L 5 m R 1 + A m B 1 + L 5 m = R 2 .
    Then,  ( u 2 , v 2 ) Γ and
    ε m ( u 2 , v 2 ) = ε m ( u 1 , v 1 ) ε S 2 ( u 1 , v 1 ) ε L 10 , L 10 ε L 10 , L 10
    or
    ( I T 1 ) ( u 2 , v 2 ) = ε m ( u 2 , v 2 ) + ε L 10 , L 10 = S 3 ( u 1 , v 1 ) .
    Thus,  S 3 ( ϖ ¯ R 1 ) ( I T 1 ) ( Γ ) .
  • ( u 0 , v 0 ) ϖ * 0 λ and  ( u , v ) ϖ r ( Γ + λ ( u 0 , v 0 ) ) or  v ϖ R 1 ( Γ + λ ( u 0 , v 0 ) ) so that
    S 3 ( u , v ) = ( I T 1 ) ( ( u , v ) λ ( u 0 , v 0 ) ) .
    Thus,
    ϵ S 2 ( u , v ) m ϵ ( u , v ) ϵ L 10 , L 10 = m ϵ ( ( u , v ) λ ( u 0 , v 0 ) ) + ϵ L 10 , L 10 ,
    or
    S 2 ( u , v ) = λ m ( u 0 , v 0 ) + L 5 , L 5 .
    Hence,
    S 2 v = λ m ( u 0 , v 0 ) + L 5 , L 5 > L 5 .
    This contradicts our claim.
  • ϵ 1 0 small enough  ( u 1 , v 1 ) ϖ L and  λ 1 1 + ϵ 1 so that  λ 1 ( u 1 , v 1 ) ϖ ¯ R 1 and
    S 3 ( u 1 , v 1 ) = ( I T 1 ) ( λ 1 ( u 1 , v 1 ) ) .
    In particular, for  ϵ 1 > 2 5 m , we have  ( u 1 , v 1 ) ϖ L λ 1 ( u 1 , v 1 ) ϖ ¯ R 1 λ 1 1 + ϵ 1 and (7) holds. Since  ( u 1 , v 1 ) ϖ L and  λ 1 ( u 1 , v 1 ) ϖ ¯ R 1 , then
    2 5 m + 1 L < λ 1 L = λ 1 ( u 1 , v 1 ) R 1 .
    Moreover,
    ϵ S 2 ( u 1 , v 1 ) m ϵ ( u 1 , v 1 ) ϵ L 10 , L 10 = λ 1 m ϵ ( u 1 , v 1 ) + ϵ L 10 , L 10 ,
    or
    S 2 ( u 1 , v 1 ) + L 5 , L 5 = ( λ 1 1 ) m ( u 1 , v 1 ) .
    Then,
    2 L 5 S 2 ( u 1 , v 1 ) + L 5 , L 5 = ( λ 1 1 ) m ( u 1 , v 1 ) = ( λ 1 1 ) m L ,
    and
    2 5 m + 1 λ 1 ,
    which contradicts out claim.
Then, conditions of Theorem 2 hold, and (1) has at least two solutions  ( u 1 , v 1 ) and  ( u 2 , v 2 ) so that
( u 1 , v 1 ) = L < ( u 2 , v 2 ) < R 1 ,
or
r   <   ( u 1 , v 1 )   <   L   <   ( u 2 , v 2 )   <   R 1 .

5. Example

Let  B = 1 and
R 1 = 10 , L = 5 , r = 4 , m = 10 50 , A = 1 10 B 1 , ϵ = 1 5 B 1 ( 1 + A ) ,
N j = 5 j { 1 , , 4 } p = 10 . Then,
A B 1 = 1 10 < B , ϵ B 1 ( 1 + A ) < 1 ,
i.e., (Hypothesis 3) holds. Next,
r < L < R 1 , ϵ > 0 , R 1 > 2 5 m + 1 L , A B 1 < L 5 ,
i.e., (Hypothesis 4) holds. Take
h ( s ) = log 1 + s q + 1 2 + s 2 q + 2 1 s q + 1 2 + s 2 q + 2 , l ( s ) = arctan s q + 1 2 1 s 2 q + 2 , s R , s ± 1 .
Then,
h ( s ) = 2 2 ( q + 1 ) s q ( 1 s 2 q + 2 ) ( 1 s q + 1 2 + s 2 q + 2 ) ( 1 s q + 1 2 + s 2 q + 2 ) , l ( s ) = ( q + 1 ) 2 s q ( 1 + s 2 q + 2 ) 1 + s 4 q + 4 , s R , s ± 1 .
Therefore,
lim s ± r = 0 q + 1 s r h ( s ) = lim s ± h ( s ) 1 r = 0 l + 1 s r = lim s ± h ( s ) r = 0 q ( r + 1 ) s r r = 0 q + 1 s r 2 = lim s ± 2 2 ( q + 1 ) s q ( 1 s 2 q + 2 ) r = 0 q + 1 s r 2 r = 0 q ( r + 1 ) s r ( 1 s q + 1 2 + s 2 q + 2 ) ( 1 s q + 1 2 + s 2 q + 2 ) ± ,
and
lim s ± r = 0 q + 1 s r l ( s ) = lim s ± l ( s ) 1 r = 0 q + 1 s r = lim s ± l ( s ) r = 0 q ( r + 1 ) s r r = 0 q + 1 s r 2 = lim s ± ( q + 1 ) 2 s q ( 1 + s 2 q + 2 ) r = 0 q + 1 s r 2 1 + s 4 q + 4 r = 0 q ( r + 1 ) s r ± .
Consequently,
< lim s ± r = 0 q + 1 s r h ( s ) < , < lim s ± r = 0 q + 1 s r l ( s ) < .
Hence, there exists  C 2 > 0 such that
r = 0 q + 1 | s | r 1 ( 4 q + 4 ) 2 log 1 + s q + 1 2 + s 2 q + 2 1 s q + 1 2 + s 2 q + 2 + 1 ( 2 q + 2 ) 2 arctan s q + 1 2 1 s 2 q + 2 C 2 ,
s R . Note that acccording to  lim s ± 1 l ( s ) = π 2 and [12] (p. 707, Integral 79), we have
d z 1 + z 4 = 1 4 2 log 1 + z 2 + z 2 1 z 2 + z 2 + 1 2 2 arctan z 2 1 z 2 .
Let
Q ( s ) = s q ( 1 + s 4 q + 4 ) , s R ,
and
g 1 ( t , x , y ) = Q ( t ) Q ( x ) , t [ 0 , ) , x R .
Then,  C > 0 such that
2 q + 1 ( q + 1 ) ! ( 1 + t + t 2 ) r = 0 q | x | r 0 t | 0 x g 1 ( t 2 , x 2 ) d x 2 | d t 2 C , t [ 0 , ) , x R .
Let
g ( t , x ) = A C g 1 ( t , x ) , t [ 0 , ) , x R .
Then,
2 q + 1 q ! ( 1 + t + t 2 ) r = 0 q | x | r 0 t | 0 x g ( t 2 , x 2 ) d x 2 | d t 2 A , t [ 0 , ) , x R ,
i.e., (Hypothesis 3) holds. Therefore, for the IVP
t u + k = 0 5 l = 0 5 k x m = 0 5 k x m u 10 x l v + k = 1 5 1 ( 1 + t 2 k ) ( 1 + x 2 k ) x 2 k + 1 u = 0 t v + k = 0 5 l = 0 5 k x k m = 0 5 k x m v 10 x l u + k = 1 5 1 ( 2 + t 4 k ) ( 3 + x 6 k ) x 2 k + 1 v = 0 , t [ 0 , ) , x R , u ( 0 , x ) = 1 1 + x 4 , v ( 0 , x ) = 1 3 + 4 x 8 , x R ,
all conditions of Theorems 1 and 2 are fulfilled.

Author Contributions

Writing—original draft preparation, S.G.G. and A.B.; writing—review and editing, K.B.; supervision, K.Z.; funding acquisition, H.M.E., E.I.H., A.H.A.A. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group no. RG-21-09-51.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kondo, C.; Pes, R. Well-Posedness for a Coupled System of Kawahara/KdV Type Equations. Appl. Math. Optim. 2021, 84, 2985–3024. [Google Scholar] [CrossRef]
  2. Boukarou, A.; Guerbati, K.; Zennir, K.; Alodhaibi, S.; Alkhalaf, S. Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces. Mathematics 2020, 8, 809. [Google Scholar] [CrossRef]
  3. Carvajal, X.; Panthee, M. Sharp well-posedness for a coupled system of mKdV-type equations. J. Evol. Equ. 2019, 19, 1167–1197. [Google Scholar] [CrossRef]
  4. Alarcon, E.; Angulo, J.; Montenegro, J. Stability and instability of solitary waves for a nonlinear dispersive system. Nonlinear Anal. 1999, 36, 1015–1035. [Google Scholar] [CrossRef]
  5. Jia, Y.; Huo, Z. Well-posedness for the fifth-order shallow water equations. J. Diff. Equ. 2009, 246, 2448–2467. [Google Scholar] [CrossRef]
  6. Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.-D.; Khan, A. A Comparative Analysis of Fractional-Order Kaup-Kupershmidt Equation within Different Operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
  7. Shah, N.A.; Alyousef, H.A.; El-Tantawy, S.A.; Chung, J.D. Analytical Investigation of Fractional-Order Korteweg—De-Vries-Type Equations under Atangana-Baleanu-Caputo Operator: Modeling Nonlinear Waves in a Plasma and Fluid. Symmetry 2022, 14, 739. [Google Scholar] [CrossRef]
  8. Shah, N.A.; Agarwal, P.; Chung, J.D.; El-Zahar, E.R.; Hamed, Y.S. Analysis of Optical Solitons for Nonlinear Schrödinger Equation with Detuning Term by Iterative Transform Method. Symmetry 2020, 12, 1850. [Google Scholar] [CrossRef]
  9. Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 1980; Volume 60. [Google Scholar]
  10. Drabek, P.; Milota, J. Methods in Nonlinear Analysis, Applications to Differential Equations; Birkhäuser: Basel, Switzerland, 2007. [Google Scholar]
  11. Djebali, S.; Mebarki, K. Fixed point index theory for perturbation of expansive mappings by k-set contractions. Top. Methods Nonlinear Anal. 2019, 54, 613–640. [Google Scholar] [CrossRef]
  12. Polyanin, A.; Manzhirov, A. Handbook of Integral Equations; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Georgiev, S.G.; Boukarou, A.; Bouhali, K.; Zennir, K.; Elkhair, H.M.; Hassan, E.I.; Alfedeel, A.H.A.; Alarfaj, A. Classical Solutions for the Generalized Kawahara–KdV System. Symmetry 2023, 15, 1159. https://doi.org/10.3390/sym15061159

AMA Style

Georgiev SG, Boukarou A, Bouhali K, Zennir K, Elkhair HM, Hassan EI, Alfedeel AHA, Alarfaj A. Classical Solutions for the Generalized Kawahara–KdV System. Symmetry. 2023; 15(6):1159. https://doi.org/10.3390/sym15061159

Chicago/Turabian Style

Georgiev, Svetlin G., A. Boukarou, Keltoum Bouhali, Khaled Zennir, Hatim M. Elkhair, Eltegani I. Hassan, Alnadhief H. A. Alfedeel, and Almonther Alarfaj. 2023. "Classical Solutions for the Generalized Kawahara–KdV System" Symmetry 15, no. 6: 1159. https://doi.org/10.3390/sym15061159

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop