Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China
Abstract
:1. Introduction
2. Literature Review
2.1. Carbon-Dioxide-Accounting Methods
2.2. Low-Carbon City Evaluation Indicator System
2.3. Core Driver Exploration Methodology
2.4. Research Pathways
3. Materials and Methods
3.1. Study Area
3.2. Data Resources
3.3. Methods
3.3.1. CRITIC–VIKOR Method
- (1)
- Determination of index weights
- (2)
- Calculation of Low-Carbon City Composite Development Index
3.3.2. Ensemble Learning
3.3.3. Moran’s I Index
3.3.4. Advanced Industrial Structure Index
4. Results
4.1. Analysis of the Results of Measuring the Level of High-Quality Development of Low-Carbon Cities
4.2. Analysis of Ensemble Learning Identification Results for Core Drivers
4.3. Analysis of Spatial Autocorrelation Results
5. Discussion
6. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Wu, Z.Y.; Zheng, H.R.; Li, M.Q.; Tan, T.L. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [Google Scholar] [CrossRef]
- Akuraju, V.; Pradhan, P.; Haase, D.; Kropp, J.P.; Rybski, D. Relating SDG11 indicators and urban scaling—An exploratory study. Sustain. Cities Soc. 2020, 52, 101853. [Google Scholar] [CrossRef]
- Xu, G.Y.; Schwarz, P.; Yang, H.L. Adjusting energy consumption structure to achieve China’s CO2 emissions peak. Renew. Sustain. Energy Rev. 2020, 122, 109737. [Google Scholar] [CrossRef]
- Gong, W.F.; Wang, C.A.H.; Fan, Z.Y.; Xu, Y. Drivers of the peaking and decoupling between CO2 emissions and economic growth around 2030 in China. Environ. Sci. Pollut. Res. 2022, 29, 3864–3878. [Google Scholar] [CrossRef]
- IEA. Key Energy Statistics. 2019. Available online: https://www.iea.org/countries/china (accessed on 12 July 2022).
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. J. Clean. Prod. 2019, 232, 1028–1042. [Google Scholar] [CrossRef]
- Stern, N. A Time for Action on Climate Change and a Time for Change in Economics. Econ. J. 2022, 132, 1259–1289. [Google Scholar] [CrossRef]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 degrees C and 2 degrees C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.X.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.Y.; Zhu, B.Q.; et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef] [PubMed]
- Issa, R.; Krzanowski, J. Finding hope in COP26 COP26 didn’t extinguish all hope, but given the urgency of this crisis, the conference fell short, write Rita Issa and Jacob Krzanowski. BMJ-Br. Med. J. 2021, 375. [Google Scholar]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhu, Y.; Liang, D.; Cheng, Q.; Yao, D.; Bao, W. Hydrogen energy system for renewable energy consumption. E3S Web Conf. 2021, 233, 01083. [Google Scholar]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Yu, M.L.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Merge, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Maryam, S. Review of modelling approaches used in the HSC context for the UK. Int. J. Hydrogen Energy 2017, 42, 24927–24938. [Google Scholar] [CrossRef]
- Ding, Y.B.; Li, M.Q.; Abdulla, A.; Shan, R.; Gao, S.; Jia, G.Z. The persistence of flexible coal in a deeply decarbonizing energy system. Environ. Res. Lett. 2021, 16, 064043. [Google Scholar] [CrossRef]
- BloombergNEF. 2019 Battery Price Survey; Report; BloombergNEF: New York, NY, USA, 2019. [Google Scholar]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jesus, A.; Antunes, P.; Santos, R.; Mendonca, S. Eco-innovation in the transition to a circular economy: An analytical literature review. J. Clean. Prod. 2018, 172, 2999–3018. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, C.J.; de Jong, M.; Lukszo, Z. Business innovation and government regulation for the promotion of electric vehicle use: Lessons from Shenzhen, China. J. Clean. Prod. 2016, 134, 371–383. [Google Scholar] [CrossRef]
- Song, M.L.; Zhao, X.; Shang, Y.P. The impact of low-carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resour. Conserv. Recycl. 2020, 157, 104777. [Google Scholar] [CrossRef]
- Voytenko, Y.; McCormick, K.; Evans, J.; Schliwa, G. Urban living labs for sustainability and low carbon cities in Europe: Towards a research agenda. J. Clean. Prod. 2016, 123, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Hodson, M.; Evans, J.; Schliwa, G. Conditioning experimentation: The struggle for place-based discretion in shaping urban infrastructures. Environ. Plan. C-Politics Space 2018, 36, 1480–1498. [Google Scholar] [CrossRef]
- Hossain, M.; Leminen, S.; Westerlund, M. A systematic review of living lab literature. J. Clean. Prod. 2019, 213, 976–988. [Google Scholar] [CrossRef]
- Shan, Y.L.; Guan, D.B.; Liu, J.H.; Mi, Z.F.; Liu, Z.; Liu, J.R.; Schroeder, H.; Cai, B.F.; Chen, Y.; Shao, S.; et al. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Xie, R. Does the Agglomeration of Producer Services Reduce Carbon Emissions? Quant. Tech. Econ. 2017, 34, 40–58. [Google Scholar]
- Chen, J.D.; Gao, M.; Cheng, S.L.; Hou, W.X.; Song, M.L.; Liu, X.; Liu, Y.; Shan, Y.L. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; He, W.; Ju, W.; Wang, H.; Wu, M.; Wang, J.; Feng, S.; Zhang, L.; Chen, J.M. The status of carbon neutrality of the world’s top 5 CO2 emitters as seen by carbon satellites. Fundam. Res. 2022, 2, 357–366. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.B.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Tian, K.; Huang, H.; Wang, J.; Zhou, T. Coupling and coordination of socioeconomic and ecological environment in Wenchuan earthquake disaster areas: Case study of severely affected counties in southwestern China. Sustain. Cities Soc. 2021, 71, 102958. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, Y.; Tang, X.; Huang, H.; Wang, R. Assessing spatial-temporal evolution and key factors of urban livability in arid zone: The case study of the Loess Plateau, China. Ecol. Indic. 2022, 140, 108995. [Google Scholar] [CrossRef]
- Wu, S.J.; Zhang, K.L. Influence of Urbanization and Foreign Direct Investment on Carbon Emission Efficiency: Evidence from Urban Clusters in the Yangtze River Economic Belt. Sustainability 2021, 13, 2722. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, X.; Huang, C. Study on the coupling and coordination relationship between the optimization of industrial structure and the construction of ecological civilization in the Yangtze River Economic Belt. J. Cent. China Norm. Univ. Nat. Sci. Ed. 2020, 54, 555–566. [Google Scholar]
- Li, X.S.; Lu, Y.L.; Huang, R.T. Whether foreign direct investment can promote high-quality economic development under environmental regulation: Evidence from the Yangtze River Economic Belt, China. Environ. Sci. Pollut. Res. 2021, 28, 21674–21683. [Google Scholar] [CrossRef]
- Pan, Z.Z.; He, J.H.; Liu, D.F.; Wang, J.W.; Guo, X.A. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- Zhao, X.K.; Ding, X.H.; Li, L. Research on Environmental Regulation, Technological Innovation and Green Transformation of Manufacturing Industry in the Yangtze River Economic Belt. Sustainability 2021, 13, 10005. [Google Scholar] [CrossRef]
- Huang, L.J.; Yang, P.; Zhang, B.Q.; Hu, W.Y. Spatio-Temporal Coupling Characteristics and the Driving Mechanism of Population-Land-Industry Urbanization in the Yangtze River Economic Belt. Land 2021, 10, 400. [Google Scholar] [CrossRef]
- Song, J.K.; Chen, R.; Ma, X.P. Collaborative Allocation of Energy Consumption, Air Pollutants and CO2 Emissions in China. Sustainability 2021, 13, 9443. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.N.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Mingxing, C.; Dadao, L.U.; Hua, Z. Comprehensive Evaluation and the Driving Factors of China’s Urbanization. Acta Geogr. Sin. 2009, 64, 387–398. [Google Scholar]
- Zhao, R.; Zhan, L.P.; Yao, M.X.; Yang, L.C. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Du, J.G.; Ali, K.; Alnori, F.; Ullah, S. The nexus of financial development, technological innovation, institutional quality, and environmental quality: Evidence from OECD economies. Environ. Sci. Pollut. Res. 2022, 1–22. [Google Scholar] [CrossRef]
- Ali, K.; Bakhsh, S.; Ullah, S.; Ullah, A.; Ullah, S. Industrial growth and CO2 emissions in Vietnam: The key role of financial development and fossil fuel consumption. Environ. Sci. Pollut. Res. 2021, 28, 7515–7527. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yin, F.C.; Zhang, Y.X.; Zhang, X. An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China. Appl. Energy 2012, 100, 277–284. [Google Scholar] [CrossRef]
- Yi, Y.C.; Wang, Y.J.; Li, Y.Q.; Qi, J. Impact of urban density on carbon emissions in China. Appl. Econ. 2021, 53, 6153–6165. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, X.P.; Zhou, C.S.; Hu, J.C.; Ou, J.P. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mandaraka, M. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Econ. 2007, 29, 636–664. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Da, Y.B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Raupach, M.R.; Marland, G.; Ciais, P.; Le Quere, C.; Canadell, J.G.; Klepper, G.; Field, C.B. Global and regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. USA 2007, 104, 10288–10293. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.D.; Tang, Z.P.; Xia, Y.; Han, M.Y.; Jiang, W.B. Identifying the key factors influencing Chinese carbon intensity using machine learning, the random forest algorithm, and evolutionary analysis. Acta Geogr. Sin. 2019, 74, 2592–2603. [Google Scholar]
- Jin, G.; Deng, X.Z.; Zhao, X.D.; Guo, B.S.; Yang, J. Spatiotemporal patterns in urbanization efficiency within the Yangtze River Economic Belt between 2005 and 2014. J. Geogr. Sci. 2018, 28, 1113–1126. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, X.; Sun, S.; Chuai, X. Spatio-temporal coupling analysis of urban land and carbon dioxide emissions from energy consumption in the Yangtze River Delta region. Geogr. Res. 2019, 38, 2188–2201. [Google Scholar]
- Song, M.L.; Du, J.T.; Tan, K.H. Impact of fiscal decentralization on green total factor productivity. Int. J. Prod. Econ. 2018, 205, 359–367. [Google Scholar] [CrossRef]
- Song, J.Z.; Feng, Q.; Wang, X.P.; Fu, H.L.; Jiang, W.; Chen, B.Y. Spatial Association and Effect Evaluation of CO2 Emission in the Chengdu-Chongqing Urban Agglomeration: Quantitative Evidence from Social Network Analysis. Sustainability 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.W.; Zhang, M. The Impacts of High-Speed Rail on Regional Accessibility and Spatial Development-Updated Evidence from China’s Mid-Yangtze River City-Cluster Region. Sustainability 2021, 13, 4227. [Google Scholar] [CrossRef]
- Du, H.Y.; Wang, D.D.; Wang, Y.Y.; Zhao, X.L.; Qin, F.; Jiang, H.; Cai, Y.L. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, X.; Li, K. Promoting High-Quality Development of the Yangtze River Economic Belt. The People’s Daily. 2022. Available online: http://paper.people.com.cn/rmrb/html/2022-06/13/nbs.D110000renmrb_01.htm (accessed on 12 July 2022).
- NPCSC. Yangtze River Protection Law of the People’s Republic of China: Overview of Key Provisions and Policy Recommendations; NPCSC: Beijing, China, 2022.
- Xu, C.B.; Ke, Y.M.; Li, Y.B.; Chu, H.; Wu, Y.N. Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on modified NSGA-II and CRITIC-TOPSIS. Energy Convers. Manag. 2020, 215, 112892. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining Objective Weights in Multiple Criteria Problems—The Critic Method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Liao, H.C.; Xu, Z.S.; Zeng, X.J. Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative Multiple Criteria Decision Making. IEEE Trans. Fuzzy Syst. 2015, 23, 1343–1355. [Google Scholar] [CrossRef]
- Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Webb, G.I.; Zheng, Z.J. Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques. IEEE Trans. Knowl. Data Eng. 2004, 16, 980–991. [Google Scholar] [CrossRef] [Green Version]
- Bauer, E.; Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 1999, 36, 105–139. [Google Scholar] [CrossRef]
- Li, H.F.; Calder, C.A.; Cressie, N. Beyond Moran’s I: Testing for spatial dependence based on the spatial autoregressive model. Geogr. Anal. 2007, 39, 357–375. [Google Scholar] [CrossRef]
- Fu, L. An Empirical Research on Industry Structure and Economic Growth. Stat. Res. 2010, 27, 79–81. [Google Scholar]
- Ye, L.; Ou, X.J. Spatial-temporal Analysis of Daily Air Quality Index in the Yangtze River Delta Region of China During 2014 and 2016. Chin. Geogr. Sci. 2019, 29, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Jiang, G.H.; Zhang, R.J.; Zheng, Q.Y.; Ma, W.Q.; Zhao, Q.L.; Li, Y.L. Addressing the rural in situ urbanization (RISU) in the Beijing-Tianjin-Hebei region: Spatio-temporal pattern and driving mechanism. Cities 2018, 75, 59–71. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, H.; Chen, L. Vulnerability Assessment of Resource-Based City A Case Study of Panzhihua. Resour. Environ. Yangtze Basin 2018, 27, 1170–1178. [Google Scholar]
- Dai, X.A.; Gao, Y.; He, X.W.; Liu, T.; Jiang, B.H.; Shao, H.Y.; Yao, Y.Z. Spatial-temporal pattern evolution and driving force analysis of ecological environment vulnerability in Panzhihua City. Environ. Sci. Pollut. Res. 2021, 28, 7151–7166. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Q.; He, J. Regional diversity of low-carbon efficiency in Sichuan province under the goal of carbon neutrality. Nat. Gas Ind. 2021, 41, 162–170. [Google Scholar]
- Teng, Y.; Ni, S.; Zhang, C.; Tuo, X. Applying the Index of Geoaccumulation to Evaluate Heavy Metal Pollution in Soil in Panzhihua Region. Chongqing Environ. Sci. 2002, 24, 25. [Google Scholar]
- Zhang, X.; Deng, S.; Xiao, H.; Zhang, Y. Emergy Evaluation of Impacts of Waste Treatment Methods on the Sustainability of the Industrial System. Resour. Sci. 2010, 32, 1806–1813. [Google Scholar]
- Chen, L.F.; Wang, K.F. The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China’s cities: Evidence from a quasi-natural experiment. Energy Econ. 2022, 110, 106018. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Y.; Ke, W.; Wu, C. Analysis on the measuring of the relationship between transportation accessibility and level of regional economic growth in Jiangsu: Based on spatial econometric perspective. Geogr. Res. 2015, 34, 2283–2294. [Google Scholar]
- Dong, S.; Huang, Y.; Li, Z.; Shi, G.; Mao, Q.; Li, J.; Yu, H. Economic Development Patterns and Regional Economic Integration Modes for the Silk Road Economic Zo1ne. Resour. Sci. 2014, 36, 2451–2458. [Google Scholar]
First-Grade Indicator | Second-Grade Indicator | Unit | Weight | Type |
---|---|---|---|---|
Industrial Structure | Primary industry share of GDP | % | 0.031 | − |
Secondary industry share of GDP | % | 0.075 | − | |
Tertiary sector share of GDP | % | 0.072 | + | |
Ecological Environment | Industrial wastewater discharge | million tons | 0.036 | − |
Industrial sulfur dioxide emissions | ton | 0.053 | − | |
Smoke and dust emissions | ton | 0.015 | − | |
Carbon Emissions | CO2 emissions | million tons | 0.053 | − |
Per capita CO2 emissions | ton | 0.050 | − | |
CO2 emission intensity per unit of GDP | Tons/million yuan | 0.032 | − | |
Technology Innovation | Number of Invention Patents | Pieces | 0.038 | + |
Number of utility model patents | Pieces | 0.034 | + | |
Number of design patents | Pieces | 0.027 | + | |
Traffic and Population | Per capita road area | m2/person | 0.054 | + |
Total number of passengers transported by city public buses and trams | 10,000 people | 0.057 | + | |
Population density | People/square kilometer | 0.083 | - | |
Economic Development | Per capita GDP | Yuan/person | 0.068 | + |
Government Expenditures | million yuan | 0.026 | + | |
Government Revenues | million yuan | 0.028 | + | |
VAT payable by industrial enterprises above the scale | million yuan | 0.040 | + | |
Energy consumption | Total artificial gas and natural gas supply | million m3 | 0.028 | − |
Total LPG supply | ton | 0.046 | − | |
Total annual electricity consumption | million kWh | 0.056 | − |
Year | Moran’s I of Industrial Structure | Z Value | p Value | Moran’s I of Technology Innovation | Z Value | p Value | Moran’s I of Carbon Emissions | Z Value | p Value |
---|---|---|---|---|---|---|---|---|---|
2006 | 0.190 | 5.950 | 0.000 | −0.018 | −0.028 | 0.777 | 0.042 | 2.000 | 0.046 |
2007 | 0.239 | 7.417 | 0.000 | 0.011 | 0.672 | 0.501 | 0.153 | 4.942 | 0.501 |
2008 | 0.242 | 7.508 | 0.000 | 0.028 | 1.204 | 0.229 | 0.161 | 5.206 | 0.000 |
2009 | 0.197 | 6.159 | 0.000 | 0.052 | 1.977 | 0.048 | 0.155 | 5.005 | 0.000 |
2010 | 0.212 | 6.602 | 0.000 | 0.078 | 2.805 | 0.005 | 0.152 | 4.898 | 0.000 |
2011 | 0.243 | 7.534 | 0.000 | 0.090 | 3.146 | 0.002 | 0.116 | 3.827 | 0.000 |
2012 | 0.260 | 8.054 | 0.000 | 0.115 | 3.902 | 0.000 | 0.151 | 4.890 | 0.000 |
2013 | 0.258 | 7.997 | 0.000 | 0.130 | 4.379 | 0.000 | 0.161 | 5.127 | 0.000 |
2014 | 0.278 | 8.584 | 0.000 | 0.136 | 4.551 | 0.000 | 0.193 | 6.130 | 0.000 |
2015 | 0.287 | 8.840 | 0.000 | 0.185 | 6.054 | 0.000 | 0.206 | 6.496 | 0.000 |
2016 | 0.297 | 9.143 | 0.000 | 0.203 | 6.658 | 0.000 | 0.234 | 7.335 | 0.000 |
2017 | 0.263 | 8.145 | 0.000 | 0.153 | 5.057 | 0.000 | 0.224 | 7.111 | 0.000 |
2018 | 0.264 | 8.158 | 0.000 | 0.156 | 5.110 | 0.000 | 0.218 | 6.915 | 0.000 |
2019 | 0.204 | 6.405 | 0.000 | 0.104 | 3.578 | 0.000 | 0.209 | 6.612 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Chen, L.; Huang, H.; Tang, P. Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China. Sustainability 2022, 14, 9686. https://doi.org/10.3390/su14159686
Yang H, Chen L, Huang H, Tang P. Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China. Sustainability. 2022; 14(15):9686. https://doi.org/10.3390/su14159686
Chicago/Turabian StyleYang, Haonan, Liang Chen, Huan Huang, and Panyu Tang. 2022. "Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China" Sustainability 14, no. 15: 9686. https://doi.org/10.3390/su14159686
APA StyleYang, H., Chen, L., Huang, H., & Tang, P. (2022). Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China. Sustainability, 14(15), 9686. https://doi.org/10.3390/su14159686