Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Spectral Acquisition
2.3. Measurements of Fruit TSSs
2.4. Spectral Calibration
2.4.1. Pretreatment
2.4.2. Spectral Outliers
2.4.3. Division of the Sample Set
2.4.4. UVE Variable Selection
2.4.5. High-Selection Framework
2.4.6. AdaBoost Ensemble
2.4.7. Model’s Metric
2.4.8. Software
3. Results and Discussion
3.1. Spectral Analysis
3.2. Spectral Preparation
3.3. UVE for Spectral Selection
3.4. High-Frequency Variables Selected by the Successive Execution of UVE
3.5. AdaBoost Ensemble from the Member Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Tang, R.; Zhang, J.; Li, Q.; Fang, D.; Jiang, L.; Abudureheman, B.; Ye, X. Evaluation of the Xinjiang indigenous fruits Xiaobai apricots: Chemical and nutritional studies. J. Agric. Food Res. 2024, 18, 101536. [Google Scholar] [CrossRef]
- Yu, W.; Yang, L.; Zhang, J.; Jiang, F.; Zhang, M.; Wang, Y.; Sun, H. Research progress on the mechanism of flavor formation and regulation in apricot. J. Fruit Sci. 2023, 40, 2624–2637. [Google Scholar] [CrossRef]
- Guo, C.; Liao, K.; Shi, D.; Jiang, N.; Tang, Y.; Diao, Y.; Liu, L. Relationship between fruit and seed traits and altitude in wild Prunus armeniaca. J. Fruit Sci. 2023, 40, 316–326. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wei, J.; Zhang, Z.; Shan, Q.; Jiang, L.; Wu, B.; Zhang, P. Calcium Chloride Affects Postharvest Color Change of ‘Xiaobai’ Apricots by Regulating Energy Metabolism Pathways. Shipin Kexue Food Sci. 2023, 44, 177–186. [Google Scholar] [CrossRef]
- Tan, B.; Kuş, E.; Tan, K.; Gülsoy, E.; Alwazeer, D. Determination of Optimum Harvest Time and Physical and Chemical Quality Properties of Shalakh (Aprikoz) Apricot Cultivar During Fruit Ripening. Acta Sci. Pol. Hortorum Cultus 2023, 22, 37–46. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, H.; Fu, F.; Liu, Y.; Zuo, X.; Li, L. Study of Zhejiang Tangerine E-Commerce Reviews Based on Natural Language Processing. Horticulturae 2025, 11, 151. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhou, L.; Wang, W.; Zhang, X.B.; Gu, Q.; Zhu, Y.H.; Chen, R.Q.; Zhang, C. Visible/near-infrared Spectroscopy and Hyperspectral Imaging Facilitate the Rapid Determination of Soluble Solids Content in Fruits. Food Eng. Rev. 2024, 16, 470–496. [Google Scholar] [CrossRef]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X. Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Yuan, L.-m.; Mao, F.; Huang, G.; Chen, X.; Wu, D.; Li, S.; Zhou, X.; Jiang, Q.; Lin, D.; He, R. Models fused with successive CARS-PLS for measurement of the soluble solids content of Chinese bayberry by vis-NIRS technology. Postharvest Biol. Technol. 2020, 169, 111308. [Google Scholar] [CrossRef]
- Wang, Z.; Ahmad, W.; Zhu, A.; Zhao, S.; Ouyang, Q.; Chen, Q. Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Sci. Total Environ. 2024, 946, 174225. [Google Scholar] [CrossRef]
- Vega-Castellote, M.; Pérez-Marín, D.; Wold, J.P.; Afseth, N.K.; Sánchez, M.T. Exploring Near-Infrared and Raman Spectroscopies for the Non-Destructive In-Situ Estimation of Sweetness in Half Watermelons. Foods 2024, 13, 3971. [Google Scholar] [CrossRef] [PubMed]
- Fass, E.; Shlomi, E.; Ziv, C.; Glikman, O.; Helman, D. Machine learning models based on hyperspectral imaging for pre-harvest tomato fruit quality monitoring. Comput. Electron. Agric. 2025, 229, 109788. [Google Scholar] [CrossRef]
- Jiang, T.; Zuo, W.; Ding, J.; Yuan, S.; Qian, H.; Cheng, Y.; Guo, Y.; Yu, H.; Yao, W. Machine learning driven benchtop Vis/NIR spectroscopy for online detection of hybrid citrus quality. Food Res. Int. 2025, 201, 115617. [Google Scholar] [CrossRef] [PubMed]
- Włodarska, K.; Szulc, J.; Khmelinskii, I.; Sikorska, E. Non-destructive determination of strawberry fruit and juice quality parameters using ultraviolet, visible, and near-infrared spectroscopy. J. Sci. Food Agric. 2019, 99, 5953–5961. [Google Scholar] [CrossRef]
- Yuan, L.-M.; Mao, F.; Chen, X.; Li, L.; Huang, G. Non-invasive measurements of ‘Yunhe’ pears by vis-NIRS technology coupled with deviation fusion modeling approach. Postharvest Biol. Technol. 2020, 160, 111067–111073. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Zou, C.; Jiang, S.; El-Seedi, H.R.; Zou, X. General model of multi-quality detection for apple from different origins by Vis/NIR transmittance spectroscopy. J. Food Meas. Charact. 2022, 16, 2582–2595. [Google Scholar] [CrossRef]
- Seki, H.; Murakami, H.; Ma, T.; Tsuchikawa, S.; Inagaki, T. Evaluating Soluble Solids in White Strawberries: A Comparative Analysis of Vis-NIR and NIR Spectroscopy. Foods 2024, 13, 2274. [Google Scholar] [CrossRef]
- Buyukcan, M.B.; Kavdir, I. Prediction of some internal quality parameters of apricot using FT-NIR spectroscopy. J. Food Meas. Charact. 2017, 11, 651–659. [Google Scholar] [CrossRef]
- Amoriello, T.; Ciorba, R.; Ruggiero, G.; Masciola, F.; Scutaru, D.; Ciccoritti, R. Vis/NIR Spectroscopy and Vis/NIR Hyperspectral Imaging for Non-Destructive Monitoring of Apricot Fruit Internal Quality with Machine Learning. Foods 2025, 14, 196. [Google Scholar] [CrossRef]
- Yuan, L.; Fu, X.; Yang, X.; Chen, X.; Huang, G.; Chen, X.; Shi, W.; Li, L. Non-Destructive Measurement of Egg’s Haugh Unit by Vis-NIR with iPLS-Lasso Selection. Foods 2023, 12, 184. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Zhang, B.T.; Zeng, Y.L. Study on Sugar Content Detection of Kiwifruit Using Near-Infrared Spectroscopy Combined With Stacking Ensemble Learning. Guang Pu Xue Yu Guang Pu Fen Xi Spectrosc. Spectr. Anal. 2024, 44, 2932–2940. [Google Scholar]
- Hu, W.; Sun, D.W.; Blasco, J. Rapid monitoring 1-MCP-induced modulation of sugars accumulation in ripening ‘Hayward’ kiwifruit by Vis/NIR hyperspectral imaging. Postharvest Biol. Technol. 2017, 125, 168–180. [Google Scholar] [CrossRef]
- Chen, Q.S.; Chen, M.; Liu, Y.; Wu, J.Z.; Wang, X.Y.; Ouyang, Q.; Chen, X.H. Application of FT-NIR spectroscopy for simultaneous estimation of taste quality and taste-related compounds content of black tea. J. Food Sci. Technol. Mysore 2018, 55, 4363–4368. [Google Scholar] [CrossRef]
- Li, X.Y.; Chen, H.Z.; Xu, L.L.; Mo, Q.S.; Du, X.R.; Tang, G.Q. Multi-model fusion stacking ensemble learning method for the prediction of berberine by FT-NIR spectroscopy. Infrared Phys. Technol. 2024, 137, 105169. [Google Scholar] [CrossRef]
- Zhang, M.; Li, G.H. Visual detection of apple bruises using AdaBoost algorithm and hyperspectral imaging. Int. J. Food Prop. 2018, 21, 1598–1607. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Sun, W.X.; Jiu, S.; Wang, L.; Deng, B.H.; Chen, Z.L.; Jiang, F.; Hu, M.H.; Zhang, C.X. Soluble Solids Content Binary Classification of Miyagawa Satsuma in Chongming Island Based on Near Infrared Spectroscopy. Front. Plant Sci. 2022, 13, 841452. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, D.; Yang, L.; Cui, T.; He, X.; Wu, D.; Dong, J.; Li, C.; Xing, S. Design and experiment of non-destructive testing system for moisture content of in-situ maize ear kernels based on VIS-NIR. J. Food Compos. Anal. 2024, 133, 106369. [Google Scholar] [CrossRef]
- Verboven, S.; Hubert, M. LIBRA: A MATLAB library for robust analysis. Chemom. Intell. Lab. Syst. 2005, 75, 127–136. [Google Scholar] [CrossRef]
- Nascimento, P.A.M.; Carvalho, L.C.; Júnior, L.C.C.; Pereira, F.M.V.; Teixeira, G.H.A. Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest Biol. Technol. 2016, 111, 345–351. [Google Scholar] [CrossRef]
- Luo, X.; Xu, L.; Huang, P.; Wang, Y.; Liu, J.; Hu, Y.; Wang, P.; Kang, Z. Nondestructive testing model of tea polyphenols based on hyperspectral technology combined with chemometric methods. Agriculture 2021, 11, 673. [Google Scholar] [CrossRef]
- Ferreira, R.D.; Teixeira, G.; Peternelli, L.A. Kennard-Stone method outperforms the Random Sampling in the selection of calibration samples in SNPs and NIR data. Cienc. Rural 2022, 52, e20201072. [Google Scholar] [CrossRef]
- Centner, V.; Massart, D.L.; deNoord, O.E.; deJong, S.; Vandeginste, B.M.; Sterna, C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [Google Scholar] [CrossRef]
- Jiang, X.; Ge, K.; Liu, Z.; Chen, N.; Ouyang, A.; Liu, Y.; Huang, Y.; Li, J.; Hu, M. Non-destructive online detection of early moldy core apples based on Vis/NIR transmission spectroscopy. Chem. Biol. Technol. Agric. 2024, 11, 63. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, L.; Wang, Q.; Tian, X.; Li, J. The Optimal Local Model Selection for Robust and Fast Evaluation of Soluble Solid Content in Melon with Thick Peel and Large Size by Vis-NIR Spectroscopy. Food Anal. Methods 2019, 12, 136–147. [Google Scholar] [CrossRef]
- Che, J.; Liang, Q.; Xia, Y.; Liu, Y.; Li, H.; Hu, N.; Cheng, W.; Zhang, H.; Lan, H. The Study on Nondestructive Detection Methods for Internal Quality of Korla Fragrant Pears Based on Near-Infrared Spectroscopy and Machine Learning. Foods 2024, 13, 3522. [Google Scholar] [CrossRef]
- Ma, L.J.; Peng, Y.F.; Pei, Y.L.; Zeng, J.Q.; Shen, H.R.; Cao, J.J.; Qiao, Y.J.; Wu, Z.S. Systematic discovery about NIR spectral assignment from chemical structural property to natural chemical compounds. Sci. Rep. 2019, 9, 9503. [Google Scholar] [CrossRef]
- Bae, H.; Yun, S.K.; Jun, J.H.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H. Assessment of organic acid and sugar composition in apricot, plumcot, plum, and peach during fruit development. J. Appl. Bot. Food Qual. 2014, 87, 24–29. [Google Scholar] [CrossRef]
Number | Range (°Brix) | Mean | Std | CV (%) | |
---|---|---|---|---|---|
Calibration | 130 | 14.6~28.5 | 22.32 | 3.276 | 13.47 |
Prediction | 59 | 15.2~29.3 | 23.10 | 2.704 | 10.77 |
Methods | Variables | LV | Calibration Set | Prediction Set | |||||
---|---|---|---|---|---|---|---|---|---|
RMSECV | Rcv | MAE | RMSEP | Rp | MAE | Bias | |||
Raw spectra | 1557 | 12 | 1.452 | 0.886 | 1.107 | 1.338 | 0.870 | 1.082 | −0.145 |
z-score pretreatment | 1557 | 11 | 1.416 | 0.902 | 1.026 | 1.321 | 0.872 | 1.076 | −0.047 |
Selected by UVE | 86 | 12 | 1.381 | 0.907 | 1.065 | 1.323 | 0.872 | 1.035 | −0.149 |
Methods | Variables | LV | Calibration Set | Prediction Set | |||||
---|---|---|---|---|---|---|---|---|---|
RMSECV | Rcv | MAE | RMSEP | Rp | MAE | Bias | |||
Selected by UVE | 86 | 12 | 1.381 | 0.907 | 1.065 | 1.323 | 0.872 | 1.035 | −0.149 |
M1: Freq ≥90 | 94 | 10 | 1.374 | 0.907 | 1.029 | 1.267 | 0.883 | 1.014 | −0.163 |
M2: Freq 30~90 | 59 | 12 | 1.373 | 0.908 | 1.058 | 1.309 | 0.873 | 1.071 | −0.150 |
M3: Freq ≤30 | 73 | 10 | 1.392 | 0.899 | 1.086 | 1.269 | 0.881 | 1.046 | −0.086 |
AdaBoost a | / | / | 1.378 | 0.906 | 1.043 | 1.267 | 0.889 | 0.994 | −0.134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Xing, Y.; Li, J.; Guo, L.; Sun, Y.; Shi, W.; Yuan, L. Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables. Molecules 2025, 30, 1543. https://doi.org/10.3390/molecules30071543
Gao F, Xing Y, Li J, Guo L, Sun Y, Shi W, Yuan L. Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables. Molecules. 2025; 30(7):1543. https://doi.org/10.3390/molecules30071543
Chicago/Turabian StyleGao, Feng, Yage Xing, Jialong Li, Lin Guo, Yiye Sun, Wen Shi, and Leiming Yuan. 2025. "Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables" Molecules 30, no. 7: 1543. https://doi.org/10.3390/molecules30071543
APA StyleGao, F., Xing, Y., Li, J., Guo, L., Sun, Y., Shi, W., & Yuan, L. (2025). Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables. Molecules, 30(7), 1543. https://doi.org/10.3390/molecules30071543