Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm
Abstract
:1. Introduction
2. Literature Review
3. Cuckoo Search Algorithm
Algorithm 1. Pseudo code of the Cuckoo Search (CS). |
Begin |
Objective function f(x), x= (x1,...,xd)T |
Generate an initial population of n host nests xi (i=1,2,...,n), each nest containing a random solution; |
while (t <MaxGeneration) or (stop criterion); |
Get a cuckoo randomly by Lévy flights; |
Evaluate its quality/fitness Fi; |
Choose a nest among n (say, j) randomly; |
if (Fi > Fj), |
Replace j by the new solution; |
end |
A fraction (pa) of worse nests are replaced by new random solutions via Lévy flights; |
Keep the best solutions (or nests with quality solutions); |
Rank the solutions and find the current best; |
Pass the current best solutions to the next generation; |
end while |
Return the best nest; |
End |
4. Training Artificial Neural Network
5. Research Design
5.1. Scenarios
5.2. Dataset
5.3. Structure of the Neural Network
5.4. Encoding Strategy
5.5. Examining the Performance
6. Experimental Results
Model | RMSE | MAPE | R |
---|---|---|---|
BP-FNN | 110.49 | 0.157268 | 0.7509 |
CS-FNN | 99.2994 | 0.135368 | 0.7762 |
PSO-FNN | 101.0622 | 0.136568 | 0.772 |
Model | RMSE | MAPE | R |
---|---|---|---|
BP-FNN | 103.22 | 0.142246 | 0.7866 |
CS-FNN | 84.0647 | 0.116846 | 0.8179 |
PSO-FNN | 100.5382 | 0.131646 | 0.7964 |
Model | RMSE | MAPE | R |
---|---|---|---|
BP-FNN | 76.1 | 0.108368 | 0.8737 |
CS-FNN | 48.7161 | 0.067268 | 0.8965 |
PSO-FNN | 66.9347 | 0.094968 | 0.8767 |
7. Conclusions
Acknowledgment
Author Contributions
Nomenclature
ACO | ant colony algorithm |
ANN | artificial neural network |
BP | back-propagation |
CS | Cuckoo Search |
FNN | feedforward neural network |
GA | genetic algorithm |
MAPE | mean absolute percentage error |
MLP | multilayer perceptron |
MLR | multiple linear regression |
PSO | particle swarm optimization |
R | correlation coefficient |
RMSE | root mean square error |
Conflicts of Interest
References
- Kumar, K.V. Neural Network Prediction of Interfacial Tension at Crystal/Solution Interface. Ind. Eng. Chem. Res. 2009, 48, 4160–4164. [Google Scholar] [CrossRef]
- Chamkalani, A.; Zendehboudi, S.; Chamkalani, R.; Lohi, A.; Elkamel, A.; Chatzis, I. Utilization of support vector machine to calculate gas compressibility factor. Fluid Phase Equilib. 2013, 358, 189–202. [Google Scholar] [CrossRef]
- Shafiei, A.; Dusseault, M.B.; Zendehboudi, S.; Chatzis, I. A new screening tool for evaluation of steamflooding performance in Naturally Fractured Carbonate Reservoirs. Fuel 2013, 108, 502–514. [Google Scholar] [CrossRef]
- Roosta, A.; Setoodeh, P.; Jahanmiri, A. Artificial Neural Network Modeling of Surface Tension for Pure Organic Compounds. Ind. Eng. Chem. Res. 2011, 51, 561–566. [Google Scholar] [CrossRef]
- Zendehboudi, S.; Ahmadi, M.A.; Mohammadzadeh, O.; Bahadori, A.; Chatzis, I. Thermodynamic Investigation of Asphaltene Precipitation during Primary Oil Production: Laboratory and Smart Technique. Ind. Eng. Chem. Res. 2013, 52, 6009–6031. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobée, B. Multivariate Reservoir Inflow Forecasting Using Temporal Neural Networks. J. Hydrol. Eng. 2001, 6, 367–376. [Google Scholar] [CrossRef]
- Can, I.; Yerdelen, C.; Kahya1, E. Stochastic Modeling of Karasu River (Turkey) Using the Methods of Artificial Neural Networks. In Proceedings of the AGU Hydrology Days, Colorado, CO, USA, 19–21 March 2007; pp. 138–144.
- Dolling, O.R.; Varas, E.A. Artificial neural networks for stream flow prediction. J. Hydraul. Res. 2002, 40, 547–554. [Google Scholar] [CrossRef]
- Kilinş, I.; Ciğizouğlu, K. Reservoir Management Using Artificial Neural Networks. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.174 (accessed on 31 October 2014).
- Lekkas, D.F.; Onof, C. Improved Flow Forecasting Using Artificial Neural Networks. In Proceedings of the 9th International Conference on Environmental Science and Technology, Rhodes island, Greece, 1–3 September 2005; pp. 877–884.
- Nguyen, V.H.; Cuong, T.H.; Pham, T.H.N. Hoabinh Reservoir Incoming Flow Forecast for the Period of 10 Days with Neural Networks. In Proceedings of Scientific Research in Open Universities’ HS-IC2007, CatBa, Vietnam, 4–6 November 2007; pp. 181–189.
- Sivapragasam, C.; Vanitha, S.; Muttil, N.; Suganya, K.; Suji, S.; Thamarai Selvi, M.; Selvi, R.; Jeya Sudha, S. Monthly flow forecast for Mississippi River basin using artificial neural networks. Neural Comput. Appl. 2014, 24, 1785–1793. [Google Scholar] [CrossRef]
- Hush, D.R.; Horne, B.G. Progress in supervised neural networks. IEEE Signal Process. Mag. 1993, 10, 8–39. [Google Scholar] [CrossRef]
- Hagar, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Adeli, H.; Hung, S.L. An adaptive conjugate gradient learning algorithm for efficient training of neural networks. Appl. Math. Comput. 1994, 62, 81–102. [Google Scholar] [CrossRef]
- Zhang, N. An online gradient method with momentum for two-layer feedforward neural networks. Appl. Math. Comput. 2009, 212, 488–498. [Google Scholar] [CrossRef]
- Mingguang, L.; Gaoyang, L. Artificial Neural Network Co-optimization Algorithm Based on Differential Evolution. In Proceedings of the Second International Symposium on Computational Intelligence and Design, Changsha, China, 12–14 December 2009; pp. 256–259.
- Gupta, J.N.D.; Sexton, R.S. Comparing backpropagation with a genetic algorithm for neural network training. Omega 1999, 27, 679–684. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mohd Hashim, S.Z.; Moradian Sardroudi, H. Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 2012, 218, 11125–11137. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
- Yang, X.-S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar]
- Yang, X.-S.; Deb, S.; Karamanoglu, M.; He, X. Cuckoo Search for Business Optimization Applications. In Proceedings of National Conference on Computing and Communication Systems (NCCCS), Durgapur, India, 21–22 November 2012; pp. 1–5.
- Kawam, A.A.L.; Mansour, N. Metaheuristic Optimization Algorithms for Training Artificial Neural Networks. Int. J. Comput. Inf. Technol. 2012, 1, 156–161. [Google Scholar]
- Valian, E.; Mohanna, S.; Tavakoli, S. Improved Cuckoo Search algorithm for feed forward neural network training. Int. J. Artif. Intell. Appl. 2011, 2, 36–43. [Google Scholar]
- Ünes, F. Prediction of Density Flow Plunging Depth in Dam Reservoirs: An Artificial Neural Network Approach. CLEAN Soil Air Water 2010, 38, 296–308. [Google Scholar] [CrossRef]
- Akhtar, M.K.; Corzo, G.A.; van Andel, S.J.; Jonoski, A. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the Ganges river basin. Hydrol. Earth Syst. Sci. 2009, 13, 1607–1618. [Google Scholar] [CrossRef]
- Taghi Sattaria, M.; Yureklib, K.; Palc, M. Performance evaluation of artificial neural network approaches in forecasting reservoir inflow. Appl. Math. Model. 2012, 36, 2649–2657. [Google Scholar] [CrossRef]
- Huang, W.; Xu, B.; Chan-Hilton, A. Forecasting flows in Apalachicola River using neural networks. Hydrol. Process. 2004, 18, 2545–2564. [Google Scholar] [CrossRef]
- Gori, M.; Tesi, A. On the problem of local minima in back-propagation. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 76–86. [Google Scholar] [CrossRef]
- Zhang, J.R.; Zhang, J.; Lock, T.M.; Lyu, M.R. A hybrid particle swarm optimization—back-propagation algorithm for feedforward neural network training. Appl. Math. Comput. 2007, 185, 1026–1037. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Systems Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Mohamad, A.B.; Zain, A.M.; Bazin, N.E.N. Cuckoo Search Algorithm for Optimization Problems—A Literature Review and its Applications. Appl. Artif. Intell. 2014, 28, 419–448. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 24, 169–174. [Google Scholar] [CrossRef]
- Yang, X.-S. (Ed.) Cuckoo Search and Firefly Algorithm; Springer: Berlin/Heidelberg, Germany, 2014.
- Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R. Modified cuckoo search: A new gradient free optimization algorithm. Chaos Solitons Fractals 2011, 44, 710–718. [Google Scholar] [CrossRef]
- Walton, S.; Brown, M.R.; Hassan, O.; Morgan, K. Comment on Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations by V. Bhargava, S. Fateen, A. Bonilla-Petriciolet. Fluid Phase Equilib. 2013, 352, 64–66. [Google Scholar] [CrossRef]
- Funahashi, K. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2, 183–192. [Google Scholar] [CrossRef]
- Norgaard, M.R.; Ravn, O.; Poulsen, N.K.; Hansen, L.K. Neural Networks for Modeling and Control of Dynamic Systems: A Practitioner’s Handbook; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Caruana, R.; Lawrence, S.; Giles, C.L. Overfitting in Neural Networks: Backpropagation, Conjugate Gradient, and Early Stopping. In Proceedings of 13th Conference on Advances Neural Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001; pp. 402–408.
- Hornik, K.; Stinchombe, M.; White, H. Universal Approximation of an unknown Mapping and its Derivatives Using Multilayer Feed forward Networks. Neural Netw. 1990, 3, 551–560. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superposition of a sigmoid function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Bhattacharya, U.; Chaudhuri, B.B. Handwritten Numeral Databases of Indian Scripts and Multistage Recognition of Mixed Numerals. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 444–457. [Google Scholar] [CrossRef]
- Dogan, E.; Akgungor, A.P. Forecasting highway casualties under the effect of railway development policy in Turkey using artificial neural networks. Neural Comput. Appl. 2013, 22, 869–877. [Google Scholar] [CrossRef]
- MATLAB; R2014a; software for technical computation; The MathWorks, Inc.: Natick, MA, USA, 2014.
- Garson, G.D. Interpreting neural-network connection weights. AI Expert 1991, 6, 47–51. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-F.; Hsieh, H.-N.; Do, Q.H. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm. Information 2014, 5, 570-586. https://doi.org/10.3390/info5040570
Chen J-F, Hsieh H-N, Do QH. Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm. Information. 2014; 5(4):570-586. https://doi.org/10.3390/info5040570
Chicago/Turabian StyleChen, Jeng-Fung, Ho-Nien Hsieh, and Quang Hung Do. 2014. "Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm" Information 5, no. 4: 570-586. https://doi.org/10.3390/info5040570
APA StyleChen, J.-F., Hsieh, H.-N., & Do, Q. H. (2014). Forecasting Hoabinh Reservoir’s Incoming Flow: An Application of Neural Networks with the Cuckoo Search Algorithm. Information, 5(4), 570-586. https://doi.org/10.3390/info5040570