Next Article in Journal
A Quantum Wavelet Uncertainty Principle
Next Article in Special Issue
Application of the Pick Function in the Lieb Concavity Theorem for Deformed Exponentials
Previous Article in Journal
Relevance of Factorization Method to Differential and Integral Equations Associated with Hybrid Class of Polynomials
Previous Article in Special Issue
Semidefinite Multiobjective Mathematical Programming Problems with Vanishing Constraints Using Convexificators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions

by
Muhammad Bilal Khan
1,
Savin Treanțǎ
2,
Mohamed S. Soliman
3,
Kamsing Nonlaopon
4,* and
Hatim Ghazi Zaini
5
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
3
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
4
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
5
Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(1), 6; https://doi.org/10.3390/fractalfract6010006
Submission received: 5 December 2021 / Revised: 14 December 2021 / Accepted: 15 December 2021 / Published: 23 December 2021
(This article belongs to the Special Issue Advances in Optimization and Nonlinear Analysis)

Abstract

:
The purpose of this study is to introduce the new class of Hermite–Hadamard inequality for LR-convex interval-valued functions known as LR-interval Hermite–Hadamard inequality, by means of pseudo-order relation (  p  ). This order relation is defined on interval space. We have proved that if the interval-valued function is LR-convex then the inclusion relation “   ” coincident to pseudo-order relation “  p  ” under some suitable conditions. Moreover, the interval Hermite–Hadamard–Fejér inequality is also derived for LR-convex interval-valued functions. These inequalities also generalize some new and known results. Useful examples that verify the applicability of the theory developed in this study are presented. The concepts and techniques of this paper may be a starting point for further research in this area.

1. Introduction

In the development of pure and applied mathematics [1,2] convexity has played a key role. Due to their resilience, convex sets and convex functions have been refined and expanded in many mathematical fields; see [3,4,5,6,7,8]. Convexity theory may be used to generate numerous inequalities in the literature. Integral inequalities [9] have uses in linear programming, combinatory, orthogonal polynomials, quantum theory, number theory, optimization theory, dynamics, and the theory of relativity. Researchers have given this problem a lot of attention [10,11,12,13,14], and it is now regarded an integrative topic involving economics, mathematics, physics, and statistics [15,16]. The Hermite–Hadamard inequality (HH-inequality) is, to the best of my knowledge, a well-known, ultimate, and broadly applied inequality. Other classical inequalities, such as the Oslen and Gagliardo–Nirenberg, Oslen, Opial, Hardy, Young, Linger, Ostrowski, levison, Arithmetic’s-Geometric, Ky-fan, Minkowski, Beckenbach–Dresher, and Holer inequality, are closely linked to the classical HH-inequality [17,18,19,20], and it can be put in the following manner.
Let   S : K  be a convex function on a convex set   K  and   t ,   υ     K  with   t   υ    . Then,
S ( t + υ 2 ) 1 υ t   t υ S ( ω ) d ω S ( t ) + S ( υ ) 2 .
In [21], Fejér looked at the key extensions of HH-inequality, dubbed Hermite–Hadamard–Fejér inequality (HH-Fejér inequality).
Let   S : K  be a convex function on a convex set   K  and   t ,   υ     K  with   t   υ    . Then,
S ( t + υ 2 ) 1 t υ D ( ω ) d ω   t υ S ( ω ) D ( ω ) d ω S ( t ) + S ( υ ) 2 t υ D ( ω ) ) d ω .  
If   D ( ω ) = 1  then, we obtain (1) from (2). Many classical inequalities may be derived by specific convex functions with the help of inequality (1). Furthermore, in both pure and industrial mathematics, these inequalities play a crucial role for convex functions. We encourage readers to go more into the literature on generalized convex functions and HH-integral inequalities, particularly [22,23,24,25,26,27,28,29] and the references therein.
Interval analysis, on the other hand, was mostly forgotten for a long time due to a lack of applicability in other fields. Moore [30] and Kulish and W. Miranker [31] introduced and researched the notion of interval analysis. It is the first time in numerical analysis that it is utilized to calculate the error boundaries of numerical solutions of a finite state machine. Since then, a number of analysts have focused on and studied interval analysis and interval-valued functions (I.V-Fs) in both mathematics and applications. As a result, various writers looked into the literature and applications of neural network output optimization, automatic error analysis, computational physics, robotics, computer graphics, and a variety of other well-known scientific and technology fields. We encourage readers to conduct more research into essential aspects and applications in the literature (see [32,33,34,35,36,37,38,39,40] and the references therein).
The theory of fuzzy sets and systems has progressed in a number of ways from its introduction five decades ago, as seen in [41]. As a result, it is useful in the study of a variety of issues in pure mathematics and applied sciences, such as operation research, computer science, management sciences, artificial intelligence, control engineering, and decision sciences. Convex analysis has contributed significantly to the advancement of several sectors of practical and pure research. Similarly, the concepts of convexity and non-convexity are important in fuzzy optimization because we obtain fuzzy variational inequalities when we characterize the optimality condition of convexity, so variational inequality theory and fuzzy complementary problem theory established powerful mechanisms of mathematical problems and have a friendly relationship. Costa [42], Costa and Roman-Flores [43], Flores-Franulic et al. [44], Roman-Flores et al. [45,46], and Chalco-Cano et al. [47,48] have recently generalized several classical discrete and integral inequalities not only to the environment of the I.V-Fs and fuzzy I.V-Fs, but also to more general set valued maps by Nikodem et al. Zhang et al. [49] used a pseudo order relation to establish a novel version of Jensen’s inequalities for set-valued and fuzzy set-valued functions, proving that these Jensen’s inequalities are an expanded form of Costa Jensen’s inequalities [42]. Zhao et al. [50], inspired by the literature, introduced   𝒽  -convex I.V-Fs and established that the HH-inequality for   𝒽  -convex I.V-Fs. Yanrong An et al. [51] took a step forward by introducing the class of   ( 𝒽 1 ,   𝒽 2 )  -convex I.V-Fs and establishing the interval HH-inequality for   ( 𝒽 1 ,   𝒽 2 )  -convex I.V-Fs.
This research is structured as follows: preliminary and novel notions and results in interval space and interval-valued convex analysis are presented in Section 2. Section 3 uses LR-convex I.V-Fs to generate LR-interval HH-inequalities and HH-Fejér inequalities. In addition, several intriguing cases are provided to support our findings. Conclusions and future plans are presented in Section 4.

2. Preliminaries

Let   K C  be the collection of all closed and bounded intervals of    that is   K C = { [ Z * ,   Z * ] : Z * ,   Z *   and   Z *   Z * } .  If   Z * 0  , then   [ Z * ,   Z * ]  is named as positive interval. The set of all positive interval is denoted by   K C +  and defined as   K C + = { [ Z * ,   Z * ] : Z * ,   Z * K C   and   Z * 0 } .  
If   [ A * ,   A * ] ,   [ Z * ,   Z * ] K C  and   s  , then arithmetic operations are defined by
[ A * ,   A * ] + [ Z * ,   Z * ] = [ A * + Z * ,   A * + Z * ] ,
[ A * ,   A * ] × [ Z * ,   Z * ] = [ min { A * Z * ,   A * Z * ,   A * Z * ,   A * Z * } ,   max { A * Z * ,   A * Z * ,   A * Z * ,   A * Z * } ] ,
s . [ A * ,   A * ] = {   [ s A * ,   s A * ]   if   s > 0 { 0 }                               if   s = 0 , [ s A * , s A * ]     if   s < 0 .
For   [ A * ,   A * ] ,   [ Z * ,   Z * ] K C ,  the inclusion    is defined by
[ A * ,   A * ] [ Z * ,   Z * ] ,   if   and   only   if   Z * A * ,   A * Z * .
Remark 1.
[49].(i) The relation   p  defined on   K C  by   [ A * ,   A * ] p [ Z * ,   Z * ]  if and only if   A * Z * ,   A * Z * ,  for all   [ A * ,   A * ] ,   [ Z * ,   Z * ] K C ,  it is a pseudo-order relation. The relation   [ A * ,   A * ] p [ Z * ,   Z * ]  coincident to   [ A * ,   A * ] [ Z * ,   Z * ]  on   K C .  
(ii) It can be easily seen that   p  looks similar to “left and right” on the real line   ,  so we call   p  is “left and right” (or “LR” order, in short).
The concept of Riemann integral for I.V-F first introduced by Moore [30] is defined as follow:
Theorem 1.
[30]. If   S : [ t , υ ] K C  is an I.V-F on such that   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ] .  Then   S  is Riemann integrable over   [ t , υ ]  if and only if,   S *  and   S *  both are Riemann integrable over   [ t , υ ]  such that
( I R ) t υ S ( ω ) d ω = [ ( R ) t υ S * ( ω ) d ω ,   ( R ) t υ S * ( ω ) d ω ] .
The collection of all Riemann integrable real valued functions and Riemann integrable I.V-F is denoted by   [ t ,   υ ]  and   [ t ,   υ ] ,  respectively.
Definition 1.
Thereal mapping   S : [ t ,   υ ]  is named as convex function if for all    ω ,   y [ t ,   υ ]  and   ς [ 0 ,   1 ]  we have
S ( ς ω + ( 1 ς ) y   ) ς S ( ω ) + ( 1 ς ) S ( y ) ,
If inequality (3) is reversed, then   S  is named as concave on   [ t ,   υ ]  . A function   S  is named as affine if   S  is both convex and cocave function. The set of all convex (concave) functions is denoted by
S X ( [ t ,   υ ] ,   ) ( S V ( [ t ,   υ ] ,   + ) ,   S A ( [ t ,   υ ] ,   + ) ) .
Definition 2.
[50]. TheI.V-F   S : [ t ,   υ ] I +  is named as convex I.V-F if for all    ω ,   y [ t ,   υ ]  and   ς [ 0 ,   1 ] , the coming inequality
S ( ς ω + ( 1 ς ) y   ) 𝒽 ( ς ) S ( ω ) + 𝒽 ( 1 ς ) S ( y ) ,
is valid. If inequality (4) is reversed, then   S   is named as concave on   [ t ,   υ ]   . A I.V-F   S   is named as affine if   S   is both convex and cocave I.V-F. The set of all convex (concave, affine) I.V-Fs is denoted by
S X ( [ t ,   υ ] ,   K C + ) ( S V ( [ t ,   υ ] ,   K C + ) ,   S A ( [ t ,   υ ] ,   K C + ) ) .
Definition 3.
[49].TheI.V-F   S : [ t ,   υ ] K C +   is named as LR-convex I.V-F if for all     ω ,   y [ t ,   υ ]   and   ς [ 0 ,   1 ]   , the coming inequality
S ( ς ω + ( 1 ς ) y   ) p ς S ( ω ) + ( 1 ς ) S ( y ) ,
is valid. If inequality (5) is reversed, then   S   is named as LR-concave on   [ t ,   υ ]   . A I.V-F   S   is named as LR-affine if   S   is both LR-convex and LR-cocave I.V-F. The set of all LR-convex (LR-concave) I.V-Fs is denoted by
L R S X ( [ t ,   υ ] ,   K C + ) ( L R S V ( [ t ,   υ ] ,   K C + ) ,     L R S A ( [ t ,   υ ] ,   K C + ) ) .
Theorem 2.
[49].Let   S : [ t ,   υ ] K C +  be an I.V-F defined by   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ] ,    for all   ω [ t ,   υ ]  . Then   S L R S X ( [ t ,   υ ] ,   K C + )  if and only if,   S * ,   S * S X ( [ t ,   υ ] )  .
Example 1.
We consider the I.V-F   S : [ 1 ,   4 ] K C +  defined by   S ( ω ) = [ 2 ω , 2 ω 2   ]  . Since end point functions   S * ( ω )  and   S * ( ω )  are convex functions. Hence   S ( ω )  is LR-convex I.V-F.
Remark 2.
By using our Definition 3 and Example 1, it can be easily observed that the concept of set inclusion    coincident to relation   p  (or   p  coincident to    ) when one of the end point function   S *  or   S *  is affine function such that “If   S S X ( [ t ,   υ ] ,   K C + )  then   S L R S V ( [ t ,   υ ] ,   K C + )  if and only if   S * S A ( [ t ,   υ ] ,   + )  and   S * S X ( [ t ,   υ ] ,   + )  ”. Similarly, “If   S S V ( [ t ,   υ ] ,   K C + )  then   S L R S X ( [ t ,   υ ] ,   K C + ) , if and only if   S * S V ( [ t ,   υ ] ,   + )  and   S * S A ( [ t ,   υ ] ,   + )  ”.
Remark 3.
From Theorem 2, it can be easily seen that if   S * ( ω ) = S * ( ω )  then, LR-convex I.V-Fs becomes classical convex functions.
Example 2.
We consider the I.V-F   S : [ 1 ,   4 ] K C +  defined by   S ( ω ) = [ 2 ω 2 , 2 ω 2   ]  . Since end point functions   S * ( ω ) ,   S * ( ω ) , are equal and convex functions. Hence,   S ( ω )  is a convex function.

3. Interval Inequalities

In this section, we present two classes of HH-inequalities and discuss some related results, and verify with the help of use examples. First of all, we derive HH-inequality for LR-convex I.V-F.
Theorem 3.
Let   S : [ t ,   υ ] K C +  be an I.V-F such that   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ]  for all   ω [ t ,   υ ]  and   S ( [ t ,   υ ] )  . If   S L R S X ( [ t ,   υ ] ,   K C + ) , then
  S ( t + υ 2 ) p 1 υ t   ( I R ) t υ S ( ω ) d ω p S ( t ) + S ( υ ) 2 .
If   S L R S V ( [ t ,   υ ] ,   K C + )   , then
S ( t + υ 2 ) p 1 υ t   ( I R ) t υ S ( ω ) d ω p S ( t ) + S ( υ ) 2 .
Proof. 
Let   S LRSX ( [ t ,   υ ] ,   K C + )  convex I.V-F. Then, by hypothesis, we have
2 S * ( t + υ 2 ) S * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) ,         2 S * ( t + υ 2 ) S * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) .
Then
2 0 1 S * ( t + υ 2 ) d ς 0 1 S * ( ς t + ( 1 ς ) υ ) d ς + 0 1 S * ( ( 1 ς ) t + ς υ ) d ς ,         2 0 1 S * ( t + υ 2 ) d ς 0 1 S * ( ς t + ( 1 ς ) υ ) d ς + 0 1 S * ( ( 1 ς ) t + ς υ ) d ς .
It follows that
S * ( t + υ 2 ) 1 υ t   t υ S * ( ω ) d ω , S * ( t + υ 2 ) 1 υ t   t υ S * ( ω ) d ω .
That is
[ S * ( t + υ 2 ) ,   S * ( t + υ 2 ) ] p 1 υ t [ t υ S * ( ω ) d ω ,   t υ S * ( ω ) d ω ] .
Thus,
  S ( t + υ 2 ) p 1 υ t   ( I R ) t υ S ( ω ) d ω .
In a similar way as above, we have
1 υ t   ( I R ) t υ S ( ω ) d ω p S ( t ) + S ( υ ) 2 .
Combining (7) and (8), we have
S ( t + υ 2 ) p 1 υ t   ( I R ) t υ S ( ω ) d ω p   S ( t ) + S ( υ ) 2 .
Hence, the required result. □
Remark 4.
If   S * ( ω ) = S * ( ω ) , then Theorem 3, reduces to the result for convex function:
  S ( t + υ 2 ) 1 υ t   ( R ) t υ S ( ω ) d ω S ( t ) + S ( υ ) 2 .
It is easy to see that due to the convexity of end point functions   S * ( ω )  and   S * ( ω )  have following two possibilities to satisfy (1) either both are convex or affine convex functions. However, in the case of interval inclusion both functions   S * ( ω )  and   S * ( ω )  has only one possibility to satisfy (1) such that both end point functions should be affine convex because in interval inclusion   S * ( ω )  is convex and   S * ( ω )  is concave, see [50].
Example 3.
We consider the function   S : [ t ,   υ ] = [ 0 ,   2 ] K C +  defined by,   S ( ω ) = [ ω 2 , 2 ω 2 ] .  Since end point functions   S * ( ω ) = ω 2 ,     S * ( ω ) = 2 ω 2  LR-convex functions. Hence   S ( ω )  is LR-convex I.V-F. We now compute the following
S * ( t + υ 2 ) 1 υ t   t υ S * ( ω ) d ω S * ( t ) + S * ( υ ) 2 .
S * ( t + υ 2 ) = S * ( 1 ) = 1 ,
1 υ t   t υ S * ( ω ) d ω = 1 2   0 2 ω 2 d ω = 4 3 ,
S * ( t ) + S * ( υ ) 2 = 2 .
That means
1 4 3 2 .
Similarly, it can be easily show that
S * ( t + υ 2 ) 1 υ t   t υ S * ( ω ) d ω S * ( t ) + S * ( υ ) 2 .
such that
S * ( t + υ 2 ) = S * ( 1 ) = 2 , 1 υ t   t υ S * ( ω ) d ω = 1 2   0 2 2 ω 2 d ω = 8 3 , S * ( t ) + S * ( υ ) 2 = 4 ,
from which, it follows that
2 8 3 4 ,
that is
[ 1 ,   2 ] [ 4 3 ,   8 3 ] [ 2 ,   4 ] .
Hence,
S ( t + υ 2 ) p 1 υ t   ( I R ) t υ S ( ω ) d ω p S ( t ) + S ( υ ) 2 .
Theorem 4.
Let   S : [ t ,   υ ] K C +  be an I.V-F such that   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ]  for all   ω [ t ,   υ ]  and   S ( [ t ,   υ ] )  . If   S L R S X ( [ t ,   υ ] ,   K C + ) , then
S ( t + υ 2 ) p   2 p 1 υ t   ( I R ) t υ S ( ω ) d ω p 1 p S ( t ) + S ( υ ) 2 ,
where
1 = S ( t ) + S ( υ ) 2 + S ( t + υ 2 ) 2 ,   2 = S ( 3 t + υ 4 ) + S ( t + 3 υ 4 ) 2
and   1 = [ 1 * ,   1 * ] ,   2 = [ 2 * ,   2 * ] .  
Proof. 
Take   [ t ,   t + υ 2 ] ,  we have
2 S ( ς t + ( 1 ς ) t + υ 2 2 + ( 1 ς ) t + ς t + υ 2 2 ) p S ( ς t + ( 1 ς ) t + υ 2   ) + S ( ( 1 ς ) t + ς t + υ 2 ) .
From which, we have
2 S * ( ς t + ( 1 ς ) t + υ 2 2 + ( 1 ς ) t + ς t + υ 2 2 ) S * ( ς t + ( 1 ς ) t + υ 2 ) + S * ( ( 1 ς ) t + ς t + υ 2 ) , 2 S * ( ς t + ( 1 ς ) t + υ 2 2 + ( 1 ς ) t + ς t + υ 2 2 ) S * ( ς t + ( 1 ς ) t + υ 2 ) + S * ( ( 1 ς ) t + ς t + υ 2 ) .
In consequence, we obtain
S * ( 3 t + υ 4 ) 2 1 υ t   t t + υ 2 S * ( ω ) d ω , S * ( 3 t + υ 4 ) 2 1 υ t   t t + υ 2 S * ( ω ) d ω .
That is
[   S * ( 3 t + υ 4 ) ,     S * ( 3 t + υ 4 ) ] 2 1 υ t [ t t + υ 2 S * ( ω ) d ω ,   t t + υ 2 S * ( ω ) d ω ] .
It follows that
S ( 3 t + υ 4 ) 2 p 1 υ t   ( I R ) t t + υ 2 S ( ω ) d ω .
In a similar way as above, we have
S ( t + 3 υ 4 ) 2 p 1 υ t   ( I R ) t + υ 2 υ S ( ω ) d ω .
Combining (9) and (10), we have
  [ S ( 3 t + υ 4 ) + S ( t + 3 υ 4 ) ] 2 p 1 υ t   ( I R ) t υ S ( ω ) d ω .
By using Theorem 3, we have
  S ( t + υ 2 ) = S ( 1 2 . 3 t + υ 4 + 1 2 . t + 3 υ 4 ) .
From which, we have
S * ( t + υ 2 ) = S * ( 1 2 . 3 t + υ 4 + 1 2 . t + 3 υ 4 ) , S * ( t + υ 2 ) = S * ( 1 2 . 3 t + υ 4 + 1 2 . t + 3 υ 4 ) ,   [ 1 2 S * ( 3 t + υ 4 ) + 1 2 S * ( t + 3 υ 4 ) ] , [ 1 2 S * ( 3 t + υ 4 ) + 1 2 S * ( t + 3 υ 4 ) ] , = 2 * , = 2 * , 1 υ t   t υ S * ( ω ) d ω ,     1 υ t   t υ S * ( ω ) d ω , 1 2 [ S * ( t ) + S * ( υ ) 2 + S * ( t + υ 2 ) ] ,         1 2 [ S * ( t ) + S * ( υ ) 2 + S * ( t + υ 2 ) ] , = 1 * , = 1 * , 1 2 [ S * ( t ) + S * ( υ ) 2 + S * ( t ) + S * ( υ ) 2 ] ,     1 2 [ S * ( t ) + S * ( υ ) 2 + S * ( t ) + S * ( υ ) 2 ] , = S * ( t ) + S * ( υ ) 2 ,       = S * ( t ) + S * ( υ ) 2 ,
that is
S ( t + υ 2 ) p   2 p 1 υ t   ( I R ) t υ S ( ω ) d ω p 1 p S ( t ) + S ( υ ) 2 ,
hence, the result follows. □
Example 4.
We consider the function   S : [ t ,   υ ] = [ 0 ,   2 ] K C +  defined by,   S ( ω ) = [ ω 2 , 2 ω 2 ] ,  as in Example 3, then   S ( ω )  is LR-convex I.V-F and satisfying (10). We have   S * ( ω ) = ω 2  and   S * ( ω ) = 2 ω 2  . We now compute the following
S * ( t ) + S * ( υ ) 2 = 2 ,     S * ( t ) + S * ( υ ) 2 = 4 , 1 * = S * ( t ) + S * ( υ ) 2 + S * ( t + υ 2 ) 2 = 3 2 ,   1 * = S * ( t ) + S * ( υ ) 2 + S * ( t + υ 2 ) 2 = 3 , 2 * = S * ( 3 t + υ 4 ) + S * ( t + 3 υ 4 ) 2 = 5 4 ,       2 * = S * ( 3 t + υ 4 ) + S * ( t + 3 υ 4 ) 2 = 5 2 ,
Then we obtain that
1 5 4 4 3 3 2 2 ,       2 5 2 8 3 3 4 ,
Hence, Theorem 4 is verified.
Theorem 5.
Let   S ,   g : [ t ,   υ ] K C +  be two I.V-F such that   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ]  and   g ( ω ) = [ g * ( ω ) ,   g * ( ω ) ]  for all   ω [ t ,   υ ]  and   S g ( [ t ,   υ ] )  . If   S ,   g L R S X ( [ t ,   υ ] ,   K C + ) , then
1 υ t   ( I R ) t υ S ( ω ) g ( ω ) d ω p B ( t , υ ) 3 + ( t , υ ) 6 ,
where   B ( t , υ ) = S ( t ) g ( t ) + S ( υ ) g ( υ ) ,     ( t , υ ) = S ( t ) g ( υ ) + S ( υ ) g ( t ) ,  and   B ( t , υ ) = [ B * ( ( t , υ ) ) ,   B * ( ( t , υ ) ) ]  and   ( t , υ ) = [ * ( ( t , υ ) ) ,   * ( ( t , υ ) ) ] .  
Proof. 
Since   S ,   g ( [ t ,   υ ] )  , then we have
    S * ( ς t + ( 1 ς ) υ ) ς S * ( t ) + ( 1 ς ) S * ( υ ) ,   S * ( ς t + ( 1 ς ) υ ) ς S * ( t ) + ( 1 ς ) S * ( υ ) .  
And
    g * ( ς t + ( 1 ς ) υ ) ς g * ( t ) + ( 1 ς ) g * ( υ ) ,   g * ( ς t + ( 1 ς ) υ ) ς g * ( t ) + ( 1 ς ) g * ( υ ) .  
From the definition of LR-convex I.V-Fs it follows that   0 p S ( ω )  and   0 p g ( ω )  , so
S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) ( ς S * ( t ) + ( 1 ς ) S * ( υ ) ) ( ς g * ( t ) + ( 1 ς ) g * ( υ ) ) = S * ( t ) g * ( t ) ς 2 + S * ( υ ) g * ( υ ) ς 2 + S * ( t ) g * ( υ ) ς ( 1 ς ) + S * ( υ ) g * ( t ) ς ( 1 ς ) S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) ( ς S * ( t ) + ( 1 ς ) S * ( υ ) ) ( ς g * ( t ) + ( 1 ς ) g * ( υ ) ) = S * ( t ) g * ( t ) ς 2 + S * ( υ ) g * ( υ ) ς 2 + S * ( t ) g * ( υ ) ς ( 1 ς ) + S * ( υ ) g * ( t ) ς ( 1 ς ) ,
Integrating both sides of above inequality over [0, 1] we obtain
0 1 S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) = 1 υ t t υ S * ( ω ) g * ( ω ) d ω ( S * ( t ) g * ( t ) + S * ( υ ) g * ( υ ) ) 0 1 ς 2 d ς + ( S * ( t ) g * ( υ ) + S * ( υ ) g * ( t ) ) 0 1 ς ( 1 ς ) d ς ,   0 1 S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) = 1 υ t   t υ S * ( ω ) g * ( ω ) d ω ( S * ( t ) g * ( t ) + S * ( υ ) g * ( υ ) ) 0 1 ς 2 d ς + ( S * ( t ) g * ( υ ) + S * ( υ ) g * ( t ) ) 0 1 ς ( 1 ς ) d ς .
It follows that,
1 υ t t υ S * ( ω ) g * ( ω ) d ω B * ( ( t , υ ) ) 0 1 ς 2 d ς   + * ( ( t , υ ) ) 0 1 ς ( 1 ς ) d ς ,         1 υ t   t υ S * ( ω ) g * ( ω ) d ω   B * ( ( t , υ ) ) 0 1 ς 2 d ς   +   * ( ( t , υ ) ) 0 1 ς ( 1 ς ) d ς ,
that is
1 υ t [ t υ S * ( ω ) g * ( ω ) d ω ,   t υ S * ( ω ) g * ( ω ) d ω ] p [ B * ( ( t , υ ) ) 3 ,   B * ( ( t , υ ) ) 3 ] + [ * ( ( t , υ ) ) 6 ,   * ( ( t , υ ) ) 6 ] .
Thus,
1 υ t   ( I R ) t υ S ( ω ) g ( ω ) d ω p B ( t , υ ) 3 + ( t , υ ) 6 ,
and the theorem has been established. □
Theorem 6.
Let   S ,   g : [ t ,   υ ] K C +  be two I.V-Fs such that   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ]  and   g ( ω ) = [ g * ( ω ) ,   g * ( ω ) ]  for all   ω [ t ,   υ ]  and   S g ( [ t ,   υ ] )  . If   S ,   g L R S X ( [ t ,   υ ] ,   K C + ) , then
2   S ( t + υ 2 ) g ( t + υ 2 ) p 1 υ t   ( I R ) t υ S ( ω ) g ( ω ) d ω + B ( t , υ ) 6 + ( t , υ ) 3 ,
where    B ( t , υ ) = S ( t ) g ( t ) + S ( υ ) g ( υ ) ,     ( t , υ ) = S ( t ) g ( υ ) + S ( υ ) g ( t ) ,  and   B ( t , υ ) = [ B * ( ( t , υ ) ) ,   B * ( ( t , υ ) ) ]  and   ( t , υ ) = [ * ( ( t , υ ) ) ,   * ( ( t , υ ) ) ] .  
Proof. 
By hypothesis, we have
S * ( t + υ 2 ) g * ( t + υ 2 )   S * ( t + υ 2 ) g * ( t + υ 2 ) 1 4 [ S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ς t + ( 1 ς ) υ ) g * ( ( 1 ς ) t + ς υ ) ]     + 1 4 [ S * ( ( 1 ς ) t + ς υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) g * ( ( 1 ς ) t + ς υ ) ] ,     1 4 [ S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ς t + ( 1 ς ) υ ) g * ( ( 1 ς ) t + ς υ ) ] + 1 4 [ S * ( ( 1 ς ) t + ς υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) g * ( ( 1 ς ) t + ς υ ) ] , 1 4 [ S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) g * ( ( 1 ς ) t + ς υ ) ] + 1 4 [ ( ς S * ( t ) + ( 1 ς ) S * ( υ ) ) ( ( 1 ς ) g * ( t ) + ς g * ( υ ) ) + ( ( 1 ς ) S * ( t ) + ς S * ( υ ) ) ( ς g * ( t ) + ( 1 ς ) g * ( υ ) ) ] , 1 4 [ S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) g * ( ( 1 ς ) t + ς υ ) ] + 1 4 [ ( ς S * ( t ) + ( 1 ς ) S * ( υ ) ) ( ( 1 ς ) g * ( t ) + ς g * ( υ ) ) + ( ( 1 ς ) S * ( t ) + ς S * ( υ ) ) ( ς g * ( t ) + ( 1 ς ) g * ( υ ) ) ] ,                                             = 1 4 [ S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) g * ( ( 1 ς ) t + ς υ ) ]                                             + 1 2 [ { ς 2 + ( 1 ς ) 2 } * ( ( t , υ ) ) + { ς ( 1 ς ) + ( 1 ς ) ς } B * ( ( t , υ ) ) ] ,                                                 = 1 4 [ S * ( ς t + ( 1 ς ) υ ) g * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) g * ( ( 1 ς ) t + ς υ ) ]                                       + 1 2 [ { ς 2 + ( 1 ς ) 2 } * ( ( t , υ ) ) + { ς ( 1 ς ) + ( 1 ς ) ς } B * ( ( t , υ ) ) ] .                                              
  I R  -Integrating over   [ 0 ,   1 ] ,  we have
2   S * ( t + υ 2 ) g * ( t + υ 2 ) 1 υ t   t υ S * ( ω ) g * ( ω ) d ω + B * ( ( t , υ ) ) 6 + * ( ( t , υ ) ) 3 ,         2   S * ( t + υ 2 ) g * ( t + υ 2 ) 1 υ t   t υ S * ( ω ) g * ( ω ) d ω + B * ( ( t , υ ) ) 6 + * ( ( t , υ ) ) 3 ,
that is
2   S ( t + υ 2 ) g ( t + υ 2 ) p 1 υ t   ( I R ) t υ S ( ω ) g ( ω ) d ω + B ( t , υ ) 6 + ( t , υ ) 3 .
Hence, the required result. □
Example 5.
We consider the I.V-Fs   S ,   g : [ t ,   υ ] = [ 0 ,   1 ] K C +  defined by   S ( ω ) = [ 2 ω 2 , 4 ω 2 ]  and   g ( ω ) = [ ω , 2 ω ] .  Since end point functions   S * ( ω ) = 2 ω 2 ,     S * ( ω ) = 4 ω 2  and   g * ( ω ) = ω ,   g * ( ω ) = 2 ω  are convex functions. Hence   S ,     g  both are LR-convex I.V-Fs. We now compute the following
1 υ t   t υ S * ( ω ) g * ( ω ) d ω = 1 2 ,     1 υ t   t υ S * ( ω ) g * ( ω ) d ω = 2 , B * ( ( t , υ ) ) 3 = 2 3 ,     B * ( ( t , υ ) ) 3 = 8 3 , * ( ( t , υ ) ) 6 = 0 ,   * ( ( t , υ ) ) 6 = 0 ,
that means
1 2 2 3 + 0 = 2 3 ,     2 8 3 + 0 = 8 3 ,
Consequently, Theorem 5 is verified.
For Theorem 6, we have
2   S * ( t + υ 2 ) g * ( t + υ 2 ) = 1 2 ,     2   S * ( t + υ 2 ) g * ( t + υ 2 ) = 2 , 1 υ t   t υ S * ( ω ) g * ( ω ) d ω = 1 2 ,       1 υ t   t υ S * ( ω ) g * ( ω ) d ω = 2 , B * ( ( t , υ ) ) 6 = 1 3 ,       B * ( ( t , υ ) ) 6 = 4 3 , * ( ( t , υ ) ) 3 = 0 ,   * ( ( t , υ ) ) 3 = 0 ,
From which, we have
1 2 1 2 + 0 + 1 3 = 5 6 ,   2 2 + 0 + 4 3 = 10 3 ,
Consequently, Theorem 6 is demonstrated.
We now give HH-Fejér inequalities for LR-convex I.V-Fs. Firstly, we obtain the second HH-Fejér inequality for LR-convex I.V-F.
Theorem 7.
Let   S : [ t ,   υ ] K C +  be an I.V-F with   t < υ , such that   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ]  for all   ω [ t ,   υ ]  and   S ( [ t ,   υ ] ) . If S L R S X ( [ t ,   υ ] ,   K C + ) , then   D : [ t ,   υ ] ,   D ( ω ) 0 ,  symmetric with respect to   t + υ 2 ,  then
1 υ t   ( I R ) t υ S ( ω ) D ( ω ) d ω p [ S ( t ) + S ( υ ) ] 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς .
Proof. 
Let   S L R S X ( [ t ,   υ ] ,   K C + )  . Then we have
S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ )                                                                                                                                                                   ( ς S * ( t ) + ( 1 ς ) S * ( υ ) ) D ( ς t + ( 1 ς ) υ ) , S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ )                                                                                                                                                                 ( ς S * ( t ) + ( 1 ς ) S * ( υ ) ) D ( ς t + ( 1 ς ) υ ) .
And
                                S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) ( ( 1 ς ) S * ( t ) + ς S * ( υ ) ) D ( ( 1 ς ) t + ς υ ) , S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) ( ( 1 ς ) S * ( t ) + ς S * ( υ ) ) D ( ( 1 ς ) t + ς υ ) .
After adding (12) and (13), and integrating over   [ 0 ,   1 ] ,  we obtain
0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς + 0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς     0 1 [ S * ( t ) { ς D ( ς t + ( 1 ς ) υ ) + ( 1 ς ) D ( ( 1 ς ) t + ς υ ) } + S * ( υ ) { ( 1 ς ) D ( ς t + ( 1 ς ) υ ) + ς D ( ( 1 ς ) t + ς υ ) } ] d ς , 0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς + 0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς   0 1 [ S * ( t ) { ς D ( ς t + ( 1 ς ) υ ) + ( 1 ς ) D ( ( 1 ς ) t + ς υ ) } + S * ( υ ) { ( 1 ς ) D ( ς t + ( 1 ς ) υ ) + ς D ( ( 1 ς ) t + ς υ ) } ] d ς . = 2 S * ( t ) 0 1 ς D ( ς t + ( 1 ς ) υ ) d ς + 2 S * ( υ ) 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς , = 2 S * ( t ) 0 1 ς D ( ς t + ( 1 ς ) υ ) d ς + 2 S * ( υ ) 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς .
Since   D  is symmetric, then
    = 2 [ S * ( t ) + S * ( υ ) ] 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς , = 2 [ S * ( t ) + S * ( υ ) ] 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς .
Since
0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς                                                                                                                                                       = 0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς = 1 υ t   t υ S * ( ω ) D ( ω ) d ω   0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς                                                                                                                                                     = 0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς = 1 υ t   t υ S * ( ω ) D ( ω ) d ω
From (15), we have
    1 υ t   t υ S * ( ω ) D ( ω ) d ω [ S * ( t ) + S * ( υ ) ] 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς ,       1 υ t   t υ S * ( ω ) D ( ω ) d ω   [ S * ( t ) + S * ( υ ) ] 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς ,
that is
[ 1 υ t   t υ S * ( ω ) D ( ω ) d ω ,   1 υ t   t υ S * ( ω ) D ( ω ) d ω ] p [ S * ( t ) + S * ( υ ) ,   S * ( t ) + S * ( υ ) ] 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς
hence
1 υ t   ( I R ) t υ S ( ω ) D ( ω ) d ω p [ S ( t ) + S ( υ ) ] 0 1 ς D ( ( 1 ς ) t + ς υ ) d ς .
Next, we construct first HH-Fejér inequality for LR-convex I.V-F, which generalizes first HH-Fejér inequalities for convex function, see [21]. □
Theorem 8.
Let   S : [ t ,   υ ] K C +  be an I.V-F with   t < υ , such that   S ( ω ) = [ S * ( ω ) ,   S * ( ω ) ]  for all   ω [ t ,   υ ]  and   S ( [ t ,   υ ] )  . If   S L R S X ( [ t ,   υ ] ,   K C + )  and   D : [ t ,   υ ] ,   D ( ω ) 0 ,  symmetric with respect to   t + υ 2 ,  and   t υ D ( ω ) d ω > 0 , then
  S ( t + υ 2 ) p 1 t υ D ( ω ) d ω   ( I R ) t υ S ( ω ) D ( ω ) d ω .
Proof. 
Since   S L R S X ( [ t ,   υ ] ,   K C + )  , then we have
S * ( t + υ 2 ) 1 2 ( S * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) ) , S * ( t + υ 2 ) 1 2 ( S * ( ς t + ( 1 ς ) υ ) + S * ( ( 1 ς ) t + ς υ ) ) ,
By multiplying (17) by   D ( ς t + ( 1 ς ) υ ) = D ( ( 1 ς ) t + ς υ )  and integrate it by   ς  over   [ 0 ,   1 ] ,  we obtain
S * ( t + υ 2 ) 0 1 D ( ( 1 ς ) t + ς υ ) d ς 1 2 ( 0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς + 0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς ) , S * ( t + υ 2 ) 0 1 D ( ( 1 ς ) t + ς υ ) d ς 1 2 ( 0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς + 0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς ) ,
Since
0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς                                                     = 0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς = 1 υ t   t υ S * ( ω ) D ( ω ) d ω                           0 1 S * ( ( 1 ς ) t + ς υ ) D ( ( 1 ς ) t + ς υ ) d ς                                                                           = 0 1 S * ( ς t + ( 1 ς ) υ ) D ( ς t + ( 1 ς ) υ ) d ς = 1 υ t   t υ S * ( ω ) D ( ω ) d ω
From (19), we have
    S * ( t + υ 2 )   1 t υ D ( ω ) d ω   t υ S * ( ω ) D ( ω ) d ω ,     S * ( t + υ 2 )   1 t υ D ( ω ) d ω   t υ S * ( ω ) D ( ω ) d ω ,
From which, we have
[ S * ( t + υ 2 ) ,     S * ( t + υ 2 ) ]                                                                                                                                                             p 1 t υ D ( ω ) d ω [   t υ S * ( ω ) D ( ω ) d ω ,       t υ S * ( ω ) D ( ω ) d ω ] ,    
that is
S ( t + υ 2 ) p 1 t υ D ( ω ) d ω   ( I R ) t υ S ( ω ) D ( ω ) d ω .
This completes the proof. □
Remark 5.
If   D ( ω ) = 1   then, combining Theorems 7 and 8, we obtain Theorem 3.
If   S * ( t ) = S * ( t )  then, Theorems 7 and 8 reduces to classical first and second HH-Fejér inequality for convex function, see [21].
If   S * ( t ) = S * ( t )  with   D ( ω ) = 1  then, Theorems 7 and 8 reduces to classical first and second HH-Fejér inequality for convex function, see [17,18].
Example 6.
We consider the I.V-F   S : [ t ,   υ ] = [ π 4 ,   π 2 ] K C +  defined by,
S ( ω ) = [ exp ( sin ( ω ) ) , 2 exp ( sin ( ω ) ) ]
Since end point functions   S * ( ω ) = exp ( sin ( ω ) )   ,   S * ( ω ) = 2 exp ( sin ( ω ) )   convex functions then, by Theorem 2,   S ( ω )   is LR-convex I.V-F. If
D ( ω ) = { ω π 4 ,       S [ π 4 , 3 π 8 ] , π 2 ω ,       S ( 3 π 8 ,   π 2 ] .  
then, we have
  1 υ t t υ [ S * ( ω ) ] D ( ω ) d ω = 4 π π 4 π 2 [ S * ( ω ) ] D ( ω ) d ω = 4 π π 4 3 π 8 [ S * ( ω ) ] D ( ω ) d ω + 4 π 3 π 8 π 2 S * ( ω ) D ( ω ) d ω , 1 υ t t υ [ S * ( ω ) ] D ( ω ) d ω = 4 π π 4 π 2 [ S * ( ω ) ] D ( ω ) d ω = 4 π π 4 3 π 8 [ S * ( ω ) ] D ( ω ) d ω + 4 π 3 π 8 π 2 S * ( ω ) D ( ω ) d ω ,
= 4 π π 4 3 π 8 [ exp ( sin ( ω ) ) ] ( ω π 4 ) d ω + 4 π 3 π 8 π 2 exp ( sin ( ω ) ) ( π 2 ω ) d ω 63 100 π ,     = 8 π π 4 3 π 8 exp ( sin ( ω ) ) ( ω π 4 ) d ω + 8 π 3 π 8 π 2 exp ( sin ( ω ) ) ( π 2 ω ) d ω 63 50 π ,            
and
    [ S * ( t ) + S * ( υ ) ] 0 1 ς D ( t + ς ( υ ,   t ) ) d ς       [ S * ( t ) + S * ( υ ) ] 0 1 ς D ( t + ς ( υ ,   t ) ) d ς
= π 2 [ 0 1 2 ς 2 d ς + 1 2 1 ς ( 1 + ς ) d ς ] = 17 π 48 ,       = π [ 0 1 2 ς 2 d ς + 1 2 1 ς ( 1 + ς ) d ς ] = 17 π 24 .
From (20) and (21), we have
[ 63 100 π ,   63 50 π ]   p [ 17 π 48 ,   17 π 24 ] .
Hence, Theorem 7 is verified.
For Theorem 8, we have
S * ( t + υ 2 ) = S * ( 3 π 8 )   1   ,       S * ( t + υ 2 ) = S * ( 3 π 8 )   2   ,                            
t υ D ( ω ) d ω = π 4 3 π 8 ( ω π 4 ) d ω + 3 π 8 π 2 ( π 2 ω ) d ω 4 25 ,
    1 t υ D ( ω ) d ω   t υ S * ( ω ) D ( ω ) d ω 1.1 1 t υ D ( ω ) d ω   t υ S * ( ω ) D ( ω ) d ω 2.1 .                            
From (22) and (23), we have
[ 1 ,   2 ]   p [ 1.1 ,   2.1 ] .
Hence, Theorem 8 is verified.

4. Results and Discussion

For LR-convex I.V-Fs, we find Hermite–Hadamard type inequalities. Our findings not only improve on Zhao’s work, but they also investigate some of the findings of Sarikaya et al. We have not looked into inequalities using interval derivatives since there are not any “interval derivatives” with desirable characteristics.

5. Conclusions

In this paper, HH-inequalities have been investigated for the concept of LR-convex I.V-Fs. The most important thing in this study is that we have proved that both concepts LR-convex I.V-F and convex I.V-Fs coincide under some mild conditions when these conditions are defined on the endpoint functions. As for future research, we try to explore this concept for generalized LR-convex I.V-Fs and some applications in interval nonlinear programing. This is an open problem for the readers and anyone can investigate this concept, “the optimality conditions of LR-convex I.V-Fs can be obtained through variational inequalities”. We hope that this concept will be helpful for other authors to play their roles in different fields of sciences. Moreover, in future, we will also start exploring this concept and their generalizations by using different fractional integral operators.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, S.T., M.S.S. and H.G.Z.; formal analysis, K.N.; investigation, M.S.S.; resources, S.T.; data curation, H.G.Z.; writing—original draft preparation, M.B.K., K.N. and H.G.Z.; writing—review and editing, M.B.K. and S.T.; visualization, H.G.Z.; supervision, M.B.K. and M.S.S.; project administration, M.B.K.; funding acquisition, K.N., M.S.S. and H.G.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors wish to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and this work was funded by the Taif University Researchers Supporting Project (Number TURSP-2020/345), Taif University, Taif, Saudi Arabia. Moreover, this research has also received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Chang, S.S. Variational Inequality and Complementarity Problems Theory and Applications; Shanghai Scientific and Technological Literature Publishing House: Shanghai, China, 1991. [Google Scholar]
  2. Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
  3. Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
  4. Bede, B. Studies in Fuzziness and Soft Computing. In Mathematics of Fuzzy Sets and Fuzzy Logic; Springer: Berlin/Heidelberg, Germany, 2013; Volume 295. [Google Scholar]
  5. Khan, M.B.; Noor, M.A.; Noor, K.L.; Chu, Y.M. New Hermite–Hadamard Type Inequalities for -Convex Fuzzy-Interval-Valued Functions. Adv. Differ. Equ. 2021, 2021, 1–20. [Google Scholar]
  6. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Generalized convexity and inequalities. J. Math. Anal. Appl. 2007, 335, 1294–1308. [Google Scholar] [CrossRef] [Green Version]
  7. Avci, M.; Kavurmaci, H.; Ozdemir, M.E. New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications. Appl. Math. Comput. 2011, 217, 5171–5176. [Google Scholar] [CrossRef]
  8. Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite–Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
  9. Iscan, I. Hermite–Hadamard type inequalities for p-convex functions. Int. J. Anal. Appl. 2016, 11, 137–145. [Google Scholar]
  10. Matkowski, J.; Nikodem, K. An integral Jensen inequality for convex multifunctions. Results Math. 1994, 26, 348–353. [Google Scholar] [CrossRef]
  11. Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Some integral inequalities for harmonic h-convex functions involving hypergeometric functions. Appl. Math. Comput. 2015, 252, 257–262. [Google Scholar] [CrossRef]
  12. Iscan, I. Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  13. Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  14. Nikodem, K.; Snchez, J.L.; Snchez, L. Jensen and Hermite–Hadamard inequalities for strongly convex set-valued maps. Math. Aeterna 2014, 4, 979–987. [Google Scholar]
  15. Chen, F.; Wu, S. Integral inequalities of Hermite–Hadamard type for products of two h-convex functions. Abstr. Appl. Anal. 2014, 5, 1–6. [Google Scholar]
  16. Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
  17. Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  18. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 1–82. [Google Scholar]
  19. Noor, M.A. Hermite–Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 5, 126–131. [Google Scholar]
  20. Pachpatte, B.G. On some inequalities for convex functions. RGMIA Res. Rep. Coll. 2003, 6, 1–9. [Google Scholar]
  21. Fejer, L. Uberdie Fourierreihen II. Math. Naturwise. Anz. Ungar. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
  22. Niculescu, P.C. The Hermite–Hadamard inequality for log convex functions. Nonlinear Anal. 2012, 75, 662–669. [Google Scholar] [CrossRef]
  23. Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [Google Scholar] [CrossRef]
  24. Yan, H.; Xu, J. A class convex fuzzy mappings. Fuzzy Sets Syst. 2002, 129, 47–56. [Google Scholar] [CrossRef]
  25. Hussain, S.; Khalid, J.; Chu, Y.M. Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 2020, 5, 5859–5883. [Google Scholar] [CrossRef]
  26. Sarikaya, M.Z.; Saglam, A.; Yildrim, H. On some Hadamard-type inequalities for h-convex functions. J. Math. Inequalities 2008, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
  27. Xu, L.; Chu, Y.M.; Rashid, S.; El-Deeb, A.A.; Nisar, K.S. On new unified bounds for a family of functions with fractional q-calculus theory. J. Funct. Spaces 2020, 2020, 1–9. [Google Scholar]
  28. Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
  29. Fang, Z.B.; Shi, R. On the, (p, h)-convex function and some integral inequalities. J. Inequalities Appl. 2014, 45, 1–16. [Google Scholar] [CrossRef] [Green Version]
  30. Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  31. Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
  32. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
  33. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Ed. 2012, 55, 9–15. [Google Scholar] [CrossRef]
  34. Snyder, J.M. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
  35. de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [Green Version]
  36. Khan, M.B.; Mohammed, P.O.; Machado, J.A.T.; Guirao, J.L. Integral Inequalities for Generalized Harmonically Convex Functions in Fuzzy-Interval-Valued Settings. Symmetry 2021, 13, 2352. [Google Scholar] [CrossRef]
  37. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  38. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Guirao, J.L. Fuzzy mixed variational-like and integral inequalities for strongly preinvex fuzzy mappings. Symmetry 2021, 13, 1816. [Google Scholar] [CrossRef]
  39. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
  40. Iscan, I. A new generalization of some integral inequalities for, (α, m)-convex functions. Math. Sci. 2013, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
  41. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
  42. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  43. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  44. Flores-Franulic, A.; Chalco-Cano, Y.; Roman-Flores, H. An Ostrowski type inequality for interval-valued functions. In Proceedings of the IFSA World Congress and AFIPS Annual Meeting IEEE, Edmonton, AB, Canada, 24–28 June 2013; Volume 35, pp. 1459–1462. [Google Scholar]
  45. Roman-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2016, 35, 1–13. [Google Scholar] [CrossRef]
  46. Roman-Flores, H.; Chalco-Cano, Y.; Silva, G.N. A note on Gronwall type inequality for interval-valued functions. In Proceedings of the IFSA World Congress and NAFIPS Annual Meeting IEEE, Edmonton, AB, Canada, 24–28 June 2013; Volume 35, pp. 1455–1458. [Google Scholar]
  47. Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  48. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  49. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
  50. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
  51. An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite–hadamard type inequalities for interval, (h1, h2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 6. https://doi.org/10.3390/fractalfract6010006

AMA Style

Khan MB, Treanțǎ S, Soliman MS, Nonlaopon K, Zaini HG. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal and Fractional. 2022; 6(1):6. https://doi.org/10.3390/fractalfract6010006

Chicago/Turabian Style

Khan, Muhammad Bilal, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, and Hatim Ghazi Zaini. 2022. "Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions" Fractal and Fractional 6, no. 1: 6. https://doi.org/10.3390/fractalfract6010006

Article Metrics

Back to TopTop