Temporary Flow Diversion in Oncological Embolization Procedures Using Degradable Starch Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intervention
2.2. Statistical Analysis
3. Results
3.1. Procedures and Embolics
3.2. Follow-Up
3.3. Procedural Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zanaty, M.; Chalouhi, N.; Tjoumakaris, S.I.; Rosenwasser, R.H.; Gonzalez, L.F.; Jabbour, P. Flow-diversion panacea or poison? Front. Neurol. 2014, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, B.; Raz, E.; Shapiro, M.; Tanweer, O.; Nossek, E.; Riina, H.A.; Nelson, P.K. Flow Diversion for Intracranial Aneurysm Treatment: Trials Involving Flow Diverters and Long-Term Outcomes. Neurosurgery 2020, 86 (Suppl. S1), S36–S45. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, V.; Arpesani, R.; Della Malva, G.; Gasparrini, F.; Vidali, S.; Ganimede, M.P.; Marrazzo, A.; Rosella, F.; Biraschi, F.; Gandini, R.; et al. Flow-diverter treatment for renal artery aneurysms: One-year follow-up of a multicentric preliminary experience. Diagn. Interv. Radiol. 2022, 28, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Lewandowski, R.J.; Kulik, L.M.; Mulcahy, M.F.; Sato, K.T.; Ryu, R.K.; Omary, R.A.; Salem, R. Complications following radioembolization with yttrium-90 microspheres: A comprehensive literature review. J. Vasc. Interv. Radiol. 2009, 20, 1121–1130. [Google Scholar] [CrossRef]
- Lucatelli, P.; Burrel, M.; Guiu, B.; de Rubeis, G.; van Delden, O.; Helmberger, T. CIRSE Standards of Practice on Hepatic Transarterial Chemoembolisation. Cardiovasc. Interv. Radiol. 2021, 44, 1851–1867. [Google Scholar] [CrossRef]
- Filippiadis, D.K.; Pereira, P.L.; Hausegger, K.A.; Binkert, C.A. CIRSE Classification System for Complications’ Reporting: A Project Evaluation Process. Cardiovasc. Interv. Radiol. 2024, 47, 1160–1162. [Google Scholar] [CrossRef]
- Giurazza, F.; Vizzuso, A.; Capussela, T.; De Martino, F.; Palmese, V.P.; Giorgetti, G.; Corvino, F.; Ierardi, A.M.; Biondetti, P.; Lucatelli, P.; et al. Left radial vs right femoral: Comparison between arterial accesses in c-TACE procedures in terms of operator radiations exposure and patient comfort. Radiol. Med. 2024. [Google Scholar] [CrossRef]
- Schindler, P.; Kaldewey, D.; Rennebaum, F.; Trebicka, J.; Pascher, A.; Wildgruber, M.; Köhler, M.; Masthoff, M. Safety, efficacy, and survival of different transarterial chemoembolization techniques in the management of unresectable hepatocellular carcinoma: A comparative single-center analysis. J. Cancer Res. Clin. Oncol. 2024, 150, 235. [Google Scholar] [CrossRef]
- Mohr, I.; Vogeler, M.; Pfeiffenberger, J.; Sprengel, S.D.; Klauss, M.; Radeleff, B.; Teufel, A.; Chang, D.H.; Springfeld, C.; Longerich, T.; et al. Clinical effects and safety of different transarterial chemoembolization methods for bridging and palliative treatments in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2022, 148, 3163–3174. [Google Scholar] [CrossRef]
- Vogl, T.J.; Langenbach, M.C.; Hammerstingl, R.; Albrecht, M.H.; Chatterjee, A.R.; Gruber-Rouh, T. Evaluation of two different transarterial chemoembolization protocols using Lipiodol and degradable starch microspheres in therapy of hepatocellular carcinoma: A prospective trial. Hepatol. Int. 2021, 15, 685–694. [Google Scholar] [CrossRef]
- Oliván-Sasot, P.; Pérez-Enguix, D.; Bello-Arques, P.; Torres-Espallardo, I.; Falgás-Lacueva, M.; Yepes-Agudelo, A.M.; Olivas-Arroyo, C. Radioembolization in patients with hepatocellular carcinoma: A series of 53 cases. Radiología 2023, 65, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Colombi, D.; Bodini, F.C.; Bossalini, M.; Rossi, B.; Michieletti, E. Extracranial Visceral Artery Aneurysms/Pseudoaneurysms Repaired with Flow Diverter Device Developed for Cerebral Aneurysms: Preliminary Results. Ann. Vasc. Surg. 2018, 53, 272.e1–272.e9. [Google Scholar] [CrossRef] [PubMed]
- Rabuffi, P.; Bruni, A.; Antonuccio, E.G.M.; Ambrogi, C.; Vagnarelli, S. Treatment of visceral artery aneurysms and pseudoaneurysms with the use of cerebral flow diverting stents: Initial experience. CVIR Endovasc. 2020, 3, 48. [Google Scholar] [CrossRef]
- Rossi, M.; Krokidis, M.; Kashef, E.; Peynircioglu, B.; Tipaldi, M.A. CIRSE Standards of Practice for the Endovascular Treatment of Visceral and Renal Artery Aneurysms and Pseudoaneurysms. Cardiovasc. Interv. Radiol. 2024, 47, 26–35. [Google Scholar] [CrossRef]
- Murray, T.É.; Brennan, P.; Maingard, J.T.; Chandra, R.V.; Little, D.M.; Brooks, D.M.; Kok, H.K.; Asadi, H.; Lee, M.J. Treatment of Visceral Artery Aneurysms Using Novel Neurointerventional Devices and Techniques. J. Vasc. Interv. Radiol. 2019, 30, 1407–1417. [Google Scholar] [CrossRef]
- Enriquez, J.; Javadi, S.; Murthy, R.; Ensor, J., Jr.; Mahvash, A.; Abdelsalam, M.E.; Madoff, D.C.; Wallace, M.J.; Avritscher, R. Gastroduodenal artery recanalization after transcatheter fibered coil embolization for prevention of hepaticoenteric flow: Incidence and predisposing technical factors in 142 patients. Acta Radiol. 2013, 54, 790–794. [Google Scholar] [CrossRef]
- Powerski, M.J.; Erxleben, C.; Scheurig-Münkler, C.; Geisel, D.; Hamm, B.; Gebauer, B. Anatomic variants of arteries often coil-occluded prior to hepatic radioembolization. Acta Radiol. 2015, 56, 159–165. [Google Scholar] [CrossRef]
- Maleux, G.; Deroose, C.; Fieuws, S.; Van Cutsem, E.; Heye, S.; Bosmans, H.; Verslype, C. Prospective comparison of hydrogel-coated microcoils versus fibered platinum microcoils in the prophylactic embolization of the gastroduodenal artery before yttrium-90 radioembolization. J. Vasc. Interv. Radiol. 2013, 24, 797–803. [Google Scholar] [CrossRef]
- Bulla, K.; Hubich, S.; Pech, M.; Löwenthal, D.; Ricke, J.; Dudeck, O. Superiority of proximal embolization of the gastroduodenal artery with the Amplatzer vascular plug 4 before yttrium-90 radioembolization: A retrospective comparison with coils in 134 patients. Cardiovasc. Interv. Radiol. 2014, 37, 396–404. [Google Scholar] [CrossRef]
- Samuelson, S.D.; Louie, J.D.; Sze, D.Y. N-butyl cyanoacrylate glue embolization of arterial networks to facilitate hepatic arterial skeletonization before radioembolization. Cardiovasc. Interv. Radiol. 2013, 36, 690–698. [Google Scholar] [CrossRef]
- Abdelsalam, M.E.; Kappadath, S.C.; Mahvash, A. Blood flow diversion using the microvascular plug to avoid non target delivery of radioactive microspheres. Radiol. Case Rep. 2020, 15, 2015–2017. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, M.W. Temporary distal balloon occlusion for hepatic embolization: A novel technique to treat what cannot be selected. Cardiovasc. Interv. Radiol. 2014, 37, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Endo, J.; Hashida, K.; Ichikawa, H.; Kojima, S.; Takashimizu, S.; Watanabe, N.; Yamagami, T.; Hasebe, T. Balloon-occluded transarterial chemoembolization using a 1.8-French tip coaxial microballoon catheter for hepatocellular carcinoma: Technical and safety considerations. Minim. Invasive Ther. Allied Technol. 2015, 24, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Hagspiel, K.D.; Nambiar, A.; Hagspiel, L.M.; Ahmad, E.A.; Bozlar, U. Temporary arterial balloon occlusion as an adjunct to Yttrium-90 radioembolization. Cardiovasc. Interv. Radiol. 2013, 36, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.C.H. Blood Flow Diversion Within Hepatocellular Carcinoma (HCC) after Selective Occlusion of Feeding Arteries (SOFA) and Feasibility of Utilizing the SOFA Technique in Transarterial Chemoembolization (SOFA-TACE). Cardiovasc. Interv. Radiol. 2022, 45, 121–126. [Google Scholar] [CrossRef]
- Abada, H.T.; Golzarian, J. Gelatine sponge particles: Handling characteristics for endovascular use. Tech. Vasc. Intervent. Radiol. 2007, 10, 257–260. [Google Scholar] [CrossRef]
- Wong, Y.S.; Salvekar, A.V.; Zhuang, K.D.; Liu, H.; Birch, W.R.; Tay, K.H.; Huang, W.M.; Venkatraman, S.S. Bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. Biomaterials 2016, 102, 98–106. [Google Scholar] [CrossRef]
- Young, L.B.; Kolber, M.; King, M.J.; Ranade, M.; Bishay, V.L.; Patel, R.S.; Nowakowski, F.S.; Fischman, A.M.; Lookstein, R.A.; Kim, E. Intrahepatic flow diversion prior to segmental Yttrium-90 radioembolization for challenging tumor vasculature. J. Interv. Med. 2022, 5, 79–83. [Google Scholar] [CrossRef]
- Meyer, C.; Pieper, C.C.; Ezziddin, S.; Wilhelm, K.E.; Schild, H.H.; Ahmadzadehfar, H. Feasibility of temporary protective embolization of normal liver tissue using degradable starch microspheres during radioembolization of liver tumours. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 231–237. [Google Scholar] [CrossRef]
- Marano, L.; Verre, L.; Carbone, L.; Poto, G.E.; Fusario, D.; Venezia, D.F.; Calomino, N.; Kaźmierczak-Siedlecka, K.; Polom, K.; Marrelli, D.; et al. Current Trends in Volume and Surgical Outcomes in Gastric Cancer. J. Clin. Med. 2023, 12, 2708. [Google Scholar] [CrossRef]
- Thaarup, I.C.; Gummesson, C.; Bjarnsholt, T. Measuring enzymatic degradation of degradable starch microspheres using confocal laser scanning microscopy. Acta Biomater. 2021, 131, 464–471. [Google Scholar] [CrossRef]
- Iezzi, R.; Pompili, M.; Rinninella, E.; Annicchiarico, E.; Garcovich, M.; Cerrito, L.; Ponziani, F.; De Gaetano, A.; Siciliano, M.; Basso, M.; et al. TACE with degradable starch microspheres (DSM-TACE) as second-line treatment in HCC patients dismissing or ineligible for sorafenib. Eur. Radiol. 2019, 29, 1285–1292. [Google Scholar] [CrossRef]
Procedures | Underlying Diseases | Non-Target Vessels Temporary Embolized with Embocept-S® | Procedural Target Vessels | Embolic Agents to the Target |
---|---|---|---|---|
4 TARE | HCC | 2 Phrenic a. 2 Intrahepatic segmental a. | Intrahepatic a. | 99mTc MAA |
10 TACE | 8 HCC 2 CCC | 8 Intrahepatic segmental a. 2 Left gastric a. | Intrahepatic a. | Lipiodol-doxorubicin Preloadable chemiotherapic beads Embocept-S®-doxorubicin |
2 TAE | Gastric cancer | 2 Left hepatic a. | Left gastric a. | Bland microparticles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giurazza, F.; Lucatelli, P.; Corvino, F.; Argirò, R.; Roccatagliata, P.; Ierardi, A.M.; Niola, R. Temporary Flow Diversion in Oncological Embolization Procedures Using Degradable Starch Microspheres. Diagnostics 2024, 14, 2844. https://doi.org/10.3390/diagnostics14242844
Giurazza F, Lucatelli P, Corvino F, Argirò R, Roccatagliata P, Ierardi AM, Niola R. Temporary Flow Diversion in Oncological Embolization Procedures Using Degradable Starch Microspheres. Diagnostics. 2024; 14(24):2844. https://doi.org/10.3390/diagnostics14242844
Chicago/Turabian StyleGiurazza, Francesco, Pierleone Lucatelli, Fabio Corvino, Renato Argirò, Pietro Roccatagliata, Anna Maria Ierardi, and Raffaella Niola. 2024. "Temporary Flow Diversion in Oncological Embolization Procedures Using Degradable Starch Microspheres" Diagnostics 14, no. 24: 2844. https://doi.org/10.3390/diagnostics14242844
APA StyleGiurazza, F., Lucatelli, P., Corvino, F., Argirò, R., Roccatagliata, P., Ierardi, A. M., & Niola, R. (2024). Temporary Flow Diversion in Oncological Embolization Procedures Using Degradable Starch Microspheres. Diagnostics, 14(24), 2844. https://doi.org/10.3390/diagnostics14242844