Ukrainian Antarctic Journal

Vol 21 No 1(26) (2023): Ukrainian Antarctic Journal
Articles

Modeling the Trooz Glacier’s movement using air temperature data and satellite SAR observations in 2015‒2022

K. Tretyak
Lviv Polytechnic National University, Lviv, 79013, Ukraine
D. Kukhtar
Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, 76019, Ukraine
Published August 16, 2023
Keywords
  • a posteriori optimization,
  • Akademik Vernadsky station,
  • ice flow velocity,
  • SAR images,
  • Sentinel-1
How to Cite
Tretyak, K., & Kukhtar, D. (2023). Modeling the Trooz Glacier’s movement using air temperature data and satellite SAR observations in 2015‒2022. Ukrainian Antarctic Journal, 21(1(26), 24-36. https://doi.org/10.33275/1727-7485.1.2023.709

Abstract

The aim of this study is modeling the dependence of maximum velocity of the Trooz Glacier (Kyiv Peninsula, West Antarctica) on air temperature. For this purpose, we processed a time series of meteorological observations at the Akademik Vernadsky station and the ice flow velocity of the Trooz Glacier. The ice velocities were determined from the synthetic aperture radar images, acquired by the Sentinel-1 satellite, for the period from May 2015 to November 2022. The SAR images were processed in the SNAP (Sentinel Application Platform) program using the Offset Tracking method. As a result, 219 ice flow velocity
maps were obtained. During the studied period, the maximum velocities varied from 2.64 m/day (August 19, 2015) to 4.05 m/day (April 18, 2020). A functional dependence between the temperature data from the Akademik Vernadsky station and the remotesensing data on the air temperature above the glacier’s surface was established. We combined the three parameters (time series of the maximum velocities of the glacial flow, remote temperature measurements above the glacier, and direct temperature measurements at the Akademik Vernadsky station) in a linear model. In order to increase the accuracy of the modeling, an a posteriori optimization was carried out. As a result, the average error in determining the maximum velocity of the glacier reduced from 23 cm/day to 17 cm/day.

References

  1. Bello, A. B., Navarro, F., Raposo, J., Miranda, M., Zazo, A., & Álvarez, M. (2022). Fixed-wing UAV flight operation under harsh weather conditions: a case study in Livingston Island Glaciers, Antarctica. Drones, 6, 384. https://doi.org/10.3390/drones6120384
  2. Boxall, K., Christie, F. D. W., Willis, I. C., Wuite, J., & Nagler, T. (2022). Seasonal land-ice-flow variability in the Antarctic Peninsula. The Cryosphere, 16, 3907–3932. https://doi.org/10.5194/tc-16-3907-2022
  3. Carr, J. R., Stokes, C. R., & Vieli, A. (2017). Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992–2010. Annals of Glaciology, 58(74), 72–91. https://doi.org/10.1017/aog.2017.3
  4. Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., & Joughin, I. (2015). Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. Journal of Glaciology, 61(225), 76–88. https://doi.org/10.3189/2015JoG13J235
  5. Christie, F. D. W., Bingham, R. G., Gourmelen, N., Tett, S. F. B., & Muto, A. (2016). Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica. Geophysical Research Letters, 43(11), 5741–5749. https://doi.org/10.1002/2016GL068972
  6. Chtirkova, B., Peneva, E., & Georgieva, G. (2021). Numerical weather prediction for the Bulgarian Antarctic Base area and sensitivity to the SST variable. In N. Dobrinkova, & G. Gadzhev (Eds.), Environmental Protection and Disaster Risks. EnviroRISK 2020. Studies in Systems, Decision and Control (Vol. 361). Springer, Cham. https://doi.org/10.1007/978-3-030-70190-1_23
  7. Cook, A. J., & Vaughan, D. G., (2010). Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. The Cryosphere, 4(1), 77–98. https://doi.org/10.5194/tc-4-77-2010
  8. Cook, A. J., Vaughan, D. G., Luckman, A. J., & Murray, T. (2014). A new Antarctic Peninsula glacier basin inventory and observed area changes since the 1940s. Antarctic Science, 26(6), 614–624. https://doi.org/10.1017/S0954102014000200
  9. Davies, B. J., Carrivick, J. L., Glasser, N. F., Hambrey, M. J., & Smellie, J. L. (2012). Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. The Cryosphere, 6(5), 1031–1048. https://doi.org/10.5194/tc-6-1031-2012
  10. Domingues, R., Goni, G., Baringer, M., & Volkov, D. (2018). What caused the accelerated sea level changes along the U.S. East Coast during 2010–2015? Geophysical Research Letters, 45(24), 13,367–13,376. https://doi.org/10.1029/2018GL081183
  11. European Centre for Medium-Range Weather Forecasts. (2019, December 20). News highlights of 2019. www.ecmwf.int/en/about/media-centre/news/2019/news-highlights-2019
  12. European Space Agency. (2022, June 29). SNAP Download. https://step.esa.int/main/download/snap-download/
  13. Filipponi, F. (2019). Sentinel-1 GRD preprocessing workflow. In The 3rd International Electronic Conference on Remote Sensing (ECRS 2019), 22 May – 5 June 2019. Sciforum Electronic Conference Series (Vol. 3, pp. 1–5). https://sciforum.net/manuscripts/6201/manuscript.pdf https://doi.org/10.3390/ECRS-3-06201
  14. Friedl, P., Seehaus, T., & Braun, M. (2021). Global time series and temporal mosaics of glacier surface velocities derived from Sentinel-1 data. Earth System Science Data, 13, 4653–4675. https://doi.org/10.5194/essd-13-4653-2021
  15. Haiden, T., Hewson, T., & Richardson, D. (2020). Forecast performance 2019. Newsletter, 163 – Spring 2020. www.ecmwf.int/en/newsletter/163/news/forecast-performance-2019
  16. Hogg, A. E., Shepherd, A., Gourmelen, N., & Engdahl, M. (2016). Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. Journal of Glaciology, 62(236), 1104–1114. https://doi.org/10.1017/jog.2016.83
  17. Jiskoot, H. (2011). Dynamics of Glaciers. In V. P. Singh, P. Singh, & U. K. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2642-2_127
  18. Kääb, A., Winsvold, S. H, Altena, B., Nuth, C., Nagler, T., & Wuite, J. (2016). Glacier remote sensing using Sentinel-2. Part I: radiometric and geometric performance, and application to ice velocity. Remote Sensing, 8(7), 598. https://doi.org/10.3390/rs8070598
  19. Kadurin, S., & Andrieieva, K. (2021). Ice sheet velocity tracking by Sentinel-1 satellite images at Graham Coast Kyiv Peninsula. Ukrainian Antarctic Journal, 1, 24–31. https://doi.org/10.33275/1727-7485.1.2021.663
  20. Lemos, A., Shepherd, A., McMillan, M., Hogg, A. E., Hatton, E., & Joughin, I. (2018). Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery. The Cryosphere, 12, 2087–2097. https://doi.org/10.5194/tc-12-2087-2018
  21. Li, N., Lei, R., Heil, P., Cheng, B., Ding, M., Tian, Z., & Li, B. (2023). Seasonal and interannual variability of the landfast ice mass balance between 2009 and 2018 in Prydz Bay, East Antarctica. The Cryosphere, 17, 917–937. https://doi.org/10.5194/tc-17-917-2023
  22. Miles, B. W. J., Stokes, C. R., Jenkins, A., Jordan, J. R., Jamieson, S. S. R., & Gudmundsson, G. H. (2023). Slowdown of Shirase Glacier, East Antarctica, caused by strengthening alongshore winds. The Cryosphere, 17, 445–456. https://doi.org/10.5194/tc-17-445-2023
  23. Pope, A., & Rees, W. G. (2014). Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification. Remote Sensing Environment, 141, 1–13. https://doi.org/10.1016/j.rse.2013.08.028
  24. Seehaus, T., Cook, A. J., Silva, A. B., & Braun, M. (2018). Changes in glacier dynamics in the northern Antarctic Peninsula since 1985. The Cryosphere, 12, 577–594. https://doi.org/10.5194/tc-12-577-2018
  25. Semmler, T., Kasper, M., Jung, T. & Serrar, S. (2016). Remote impact of the Antarctic atmosphere on the southern midlatitudes. Meteorologische Zeitschrift, 25(1), 71–77. https://doi.org/10.1127/metz/2015/0685
  26. Serco Italia SPA. (2018). Glacier Velocity with Sentinel-1 – Peterman Glacier, Greenland (version 1.2). Retrieved March 12, 2023, from https://eo4society.esa.int/wp-content/uploads/2022/01/CRYO02_GlacierVelocity_Greenland.pdf
  27. Stocker-Waldhuber, M., Fischer, A., Helfricht, K., & Kuhn, M. (2019). Long-term records of glacier surface velocities in the Ötztal Alps (Austria). Earth System Science Data, 11, 705–715. https://doi.org/10.5194/essd-11-705-2019
  28. Tretyak, K., Cranenbroeck, J. v., Balan, A. Yu., Lompas, O. V., & Savchyn, I. R. (2014). A posteriori optimization of accuracy and reliability of active geodetic monitoring network of the Dniester HPP. Geodesy, Cartography and Aerial Photography, 79(79), 5–14.
  29. Tretyak, K., Hlotov, V., Holubinka, Y., & Marusazh, Kh. (2016). Complex geodetic research in Ukrainian Antarctic Station «Academician Vernadsky» (Years 2002–2005, 2013–2014). Reports on Geodesy and Geoinformatics, 100(1), 149–163. https://doi.org/10.1515/rgg-2016-0012
  30. Wallis, B. J., Hogg, A. E., van Wessem, J. M., Davison, B. J., & van den Broeke, M. R. (2023). Widespread seasonal speedup of west Antarctic Peninsula glaciers from 2014 to 2021. Nature Geoscience, 16, 231–237. https://doi.org/10.1038/s41561-023-01131-4
  31. World Meteorological Organization. (2023, April 21). WMO annual report highlights continuous advance of climate change. https://public.wmo.int/en/media/press-release/wmo-annualreport-highlights-continuous-advance-of-climate-change