COMPARISON OF BODY COMPOSITION METHODS FOR ESTIMATING BODY FAT PERCENTAGE IN LOWER LIMB PROSTHESIS USERS

Authors

  • John Smith Department of Counseling, Health and Kinesiology, College of Education and Human Development, Texas A&M University- San Antonio, San Antonio, Texas, USA. https://orcid.org/0009-0003-7827-8280
  • Gary Guerra Department of Exercise and Sport Science, St. Mary’s University, San Antonio, Texas, USA. https://orcid.org/0000-0002-0161-4616
  • T. Brock Symons Department of Counseling, Health and Kinesiology, College of Education and Human Development, Texas A&M University- San Antonio, San Antonio, Texas, USA.
  • Eun Hye Kwon Department of Counseling, Health and Kinesiology, College of Education and Human Development, Texas A&M University- San Antonio, San Antonio, Texas, USA.
  • Eun-Jung Yoon Department of Exercise and Sport Science, St. Mary’s University, San Antonio, Texas, USA; Laboratory of Animal Physiology and Medicine, Department of Biology Education, Korea National University of Education, Chungbuk, Republic of Korea. https://orcid.org/0000-0003-3644-6090

DOI:

https://doi.org/10.33137/cpoj.v6i1.41605

Keywords:

Amputation , Body Fat, Dual-Energy X-Ray Absorptiometry, Air Displacement Plethysmography, ADP, DXA, Prosthesis, Body Composition

Abstract

BACKGROUND: There is a dearth of literature evaluating the accuracy of Air Displacement Plethysmography (ADP) compared to Dual-energy X-ray Absorptiometry (DXA) for assessing body composition in individuals with lower limb amputations. Validity of ADP in persons with lower limb amputations must be established.

OBJECTIVE: The objective of this study was to compare body composition in persons with lower limb amputations using the BOD POD® and DXA.

METHODOLOGY: Body composition was performed on eleven lower limb prosthesis users (age 53.2±14.3 years, weight 81.9±22.3kg) using ADP and DXA with and without prosthesis.

FINDINGS: Repeated measures ANOVA indicated no significant difference in body composition among and between trials, F(3,8)= 3.36, p= 0.075. There were no significant differences in Body Fat (BF) percentage with and without prostheses on the BOD POD (28.5±15.7% and 33.7±12.1%, respectively) nor the DXA (32.9±10.6% and 32.0±9.9%, respectively). Association between the BOD POD and DXA were greatest when prostheses were not worn compared to when they were worn. Bland-Altman plots indicate agreement between BOD POD® and DXA was greatest while wearing the prosthesis.

CONCLUSION: This study is a first to compare total body fat percent between the BOD POD® and DXA in lower limb prosthesis users. BOD POD® report valid indices of BF%. Future work will utilize the BOD POD® in intervention studies for monitoring body composition changes across the continuum of rehabilitation.

Layman's Abstract

Measurement of body composition is helpful in understanding the health of persons with lower limb prosthesis. The gold standard method of body composition assessment is through Dual-energy X-ray Absorptiometry (DXA). This method can be costly and is less economical than Air Displacement Plethysmography (ADP). The aim of this research was to explore the accuracy of the ADP using a BOD POD® instrument in lower limb prosthesis wearers. Body composition measurements using the BOD POD® and DXA were administered. Assessments were performed while wearing and not wearing the prosthesis. Results indicate that no differences between the two body composition assessment methods either with or without prosthesis. The less costly ADP technology may be utilized for body composition in lower limb prosthesis users.

Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/41605/32165

How To Cite: Smith JD, Guerra G, Symons TB, Kwon EH, Yoon EJ. Comparison of body composition methods for estimating body fat percentage in lower limb prosthesis users. Canadian Prosthetics & Orthotics Journal. 2023; Volume 6, Issue 1, No.2. https://doi.org/10.33137/cpoj.v6i1.41605

Corresponding Author: Gary Guerra, PhD  
Department of Exercise and Sport Science, St. Mary’s University, San Antonio, Texas, USA.
E-Mail: gguerra5@stmarytx.edu
ORCID ID: https://orcid.org/0000-0002-0161-4616

Downloads

Download data is not yet available.

References

Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017-2018. NCHS Data Brief. 2020; 360:1-8. PMID: 32487284

Ito H, Nakasuga K, Ohshima A, Sakai Y, Maruyama T, Kaji Y, et al. Excess accumulation of body fat is related to dyslipidemia in normal-weight subjects. Int J Obes Relat Metab Disord. 2004;28(2):242-7. DOI: 10.1038/sj.ijo.0802528

Kim JY, Han SH, Yang BM. Implication of high-body-fat percentage on cardiometabolic risk in middle-aged, healthy, normal-weight adults. Obesity (Silver Spring). 2013;21(8):1571-7. DOI: 10.1002/oby.20020. PMID: 23404833

Manson JE, Willett WC, Stampfer MJ, Colditz GA, Hunter DJ, Hankinson SE, et al. Body weight and mortality among women. N Engl J Med. 1995;333(11):677–85. DOI: 10.1056/NEJM1995 09143331101

Haslam DW, James WPT. Obesity. Lancet. 2005;366(9492): 1197–209. DOI: 10.1016/S0140-6736(05)67483-1

Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43. DOI: 10.1038/35007508

Tsai AG, Williamson DF, Glick HA. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes Rev. 2011;12(1):50–61. DOI:10.1111/j.1467-789X.2009.00708.x

Cawley J, Biener A, Meyerhoefer C, Ding Y, Zvenyach T, Smolarz BG, et al. Direct medical costs of obesity in the United States and the most populous states. J Manag care Spec Pharm. 2021;27(3):354–66. DOI: 10.18553/jmcp.2021.20410

Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22(7 Suppl):s176-85. PMID: 27356115

Mollee TS, Dijkstra PU, Dekker R, Geertzen JHB. The association between body mass index and skin problems in persons with a lower limb amputation: an observational study. BMC Musculoskelet Disord. 2021;22(1):769. DOI:10.1186/s12891-021-04646-2

Shahriar SH, Masumi M, Edjtehadi F, Soroush MR, Soveid M, Mousavi B. Cardiovascular risk factors among males with war-related bilateral lower limb amputation. Mil Med. 2009;174(10):1108–12. DOI: 10.7205/milmed-d-00-0109

George BG, Pruziner AL, Andrews AM. Circumference method estimates percent body fat in male US service members with lower limb loss. J Acad Nutr Diet. 2021;121(7):1327–34. DOI: 10.1016/j.jand.2021.02.009

Kurdibaylo SF. Obesity and metabolic disorders in adults with lower limb amputation. J Rehabil Res Dev. 1996;33(4):387–94.

Tzamaloukas AH, Patron A, Malhotra D. Body mass index in amputees. JPEN J Parenter Enteral Nutr.1994;18(4):355–8. DOI: 10.1177/014860719401800414

McDermott MM, Hoff F, Ferrucci L, Pearce WH, Guralnik JM, Tian L, et al. Lower extremity ischemia, calf skeletal muscle characteristics, and functional impairment in peripheral arterial disease. J Am Geriatr Soc. 2007;55(3):400–6. DOI/10.1111/j.1532-5415.2007.01092.x

Ma KF, Levolger S, Vedder IR, El Moumni M, de Vries J-PPM, Bokkers RPH, et al. The impact of lower extremity skeletal muscle atrophy and myosteatosis on revascularization outcomes in patients with peripheral arterial disease. J Clin Med. 2021;10(17):3963. DOI: 10.3390/jcm10173963

Rosenberg DE, Turner AP, Littman AJ, Williams RM, Norvell DC, Hakimi KM, et al. Body mass index patterns following dysvascular lower extremity amputation. Disabil Rehabil. 2013; 25;35(15):1269–75. DOI:10.3109/09638288.2012.726690

Fard B, Dijkstra PU, Voesten HGJM, Geertzen JHB. Mortality, reamputation, and preoperative comorbidities in patients undergoing dysvascular lower limb amputation. Ann Vasc Surg. 2020;64:228–38. DOI: 10.1016/j.avsg.2019.09.010

Zeng Q, Dong S-Y, Sun X-N, Xie J, Cui Y. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Brazilian J Med Biol Res. 2012;45(7):591–600. DOI: 10.1590/s0100-879x2012007500059

Sherk VD, Bemben MG, Bemben DA. Interlimb muscle and fat comparisons in persons with lower-limb amputation. Arch Phys Med Rehabil. 2010;91(7):1077–81. DOI: 10.1016/j.apmr.2010.04. 008

Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes. 2010;34(5):791–9. DOI: 10.1038/ijo.2010.5

Ward LC. Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. Eur J Clin Nutr. 2019;73(2):194–9. DOI: 10.1038/ s41430-018-0335-3

Flakoll P, Kent P, Neyra R, Levenhagen D, Chen K, Ikizler T. Bioelectrical impedance vs air displacement plethysmography and dual-energy X-ray absorptiometry to determine body composition in patients with end-stage renal disease. J Parenter Enter Nutr. 2004;28(1):13–21.DOI:10.1177/014860710402800113

Lopez-Gonzalez D, Wells JCK, Clark P. Body composition assessment in Mexican children and adolescents. part 2: cross-validation of three bio-electrical impedance methods against dual X-ray absorptiometry for total-body and regional body composition. Nutrients. 2022;14(5):965. DOI: 10.3390/nu14050965

Gomez-Arbelaez D, Bellido D, Castro AI, Ordoñez-Mayan L, Carreira J, Galban C, et al. Body Composition changes after very-low-calorie ketogenic diet in obesity evaluated by 3 standardized methods. J Clin Endocrinol Metab. 2017;102(2):488–98. DOI: 10.1210/jc.2016-2385

Ziai S, Coriati A, Chabot K, Mailhot M, Richter MV, Rabasa-Lhoret R. Agreement of bioelectric impedance analysis and dual-energy X-ray absorptiometry for body composition evaluation in adults with cystic fibrosis. J Cyst Fibros. 2014;13(5):585–8. DOI: 10.1016/j.jcf.2014.01.006

Kyle U, Genton L, Hans D, Karsegard L, Slosman D, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr. 2001;55(8):663–72. DOI: 10.1038/sj.ejcn.1601198

Lowry DW, Tomiyama AJ. Air displacement plethysmography versus dual-energy x-ray absorptiometry in underweight, normal-weight, and overweight/obese individuals. PLoS One. 2015;10(1):e0115086. DOI: 10.1371/journal.pone.0115086

Morgan SJ, Balkman GS, Gaunaurd IA, Kristal A, Amtmann D, Hafner BJ. Clinical resources for assessing mobility of people with lower-limb amputation: interviews with rehabilitation clinicians. J Prosthet Orthot. 2022;34(2):69–78. DOI: 10.1097/jpo. 0000000000000345

Maggioni M, Bertoli S, Margonato V, Merati G, Veicsteinas A, Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol. 2003;40:s183–6. DOI:10.1007/s00592-003-0061-7

Beck LA, Lamb JL, Atkinson EJ, Wuermser L-A, Amin S. Body composition of women and men with complete motor paraplegia. J Spinal Cord Med. 2014;37(4):359–65. DOI: 10.1179/ 2045772313Y.0000000151

Spungen AM, Wang J, Pierson RN, Bauman WA. Soft tissue body composition differences in monozygotic twins discordant for spinal cord injury. J Appl Physiol. 2000;88(4):1310–5. DOI: 10.1152/jappl.2000.88.4.1310

Swisher A, Yeater R, Moffett K, Baer L, Stanton B. A comparison of methods to determine body fat in individuals with cystic fibrosis: a pilot study. J Exerc Physiol Online. 2003;6(2).

Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition. 1993 Sep-Oct;9(5):480-91; discussion 480, 492. PMID: 8286893

Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:113–40. DOI: 10.1111/j.1749-6632.1963.tb17079.x

van Beijsterveldt IALP, Beunders VAA, Bijlsma A, Vermeulen MJ, Joosten KFM, Hokken-Koelega ACS. Body composition assessment by air-displacement plethysmography compared to dual-energy X-ray absorptiometry in full-term and preterm aged three to five years. J Clin Med. 2022;11(6):1604. DOI: 10.3390/jcm11061604

Delisle-Houde P, Reid RER, Insogna JA, Prokop NW, Buchan TA, Fontaine SL, et al. Comparing DXA and air displacement plethysmography to assess body composition of male collegiate hockey players. J Strength Cond Res. 2019;33(2):474–8. DOI: 10.1519/JSC.0000000000001863

Lowry DW, Tomiyama AJ. Air Displacement Plethysmography versus Dual-Energy X-Ray Absorptiometry in Underweight, Normal-Weight, and Overweight/Obese Individuals. Thearle M, editor. PLoS One. 2015;10(1):e0115086. DOI:10.1371/journal. pone.0115086

Ballard TP, Fafara L, Vukovich MD. Comparison of Bod Pod and DXA in female collegiate athletes. Med Sci Sports Exerc. 2004;36(4):731-5. DOI: 10.1249/01.mss.0000121943.02489.2b

Collins MA, Millard-Stafford ML, Sparling PB, Snow TK, Rosskopf LB, Webb SA, et al. Evaluation of the BOD POD for assessing body fat in collegiate football players. Med Sci Sports Exerc. 1999;31(9):1350-6. DOI: 10.1097/00005768-199909000-00019

Wechsler, S. Statistics at Square One. 9th ed, revised by M. J. Campbell, T. D. V. Swinscow, BMJ Publ. Group, London, ISBN 0-7279-0916-9. Statistics in Medicine.1996; 16(22): 2629-2630

Vincent W. Statistics in Kinesiology - 3rd ed. Champaign: Human Kinetics; 2004.

Cohen, J. Statistical Power Analysis for the Behavioral Sciences- 2nd ed. Routledge.1988; DOI:10.4324/ 9780203771587

Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr. 2002;75(3):453–67. DOI: 10.1093/ajcn/75.3.453

Miyatake N, Nonaka K, Fujii M. A new air displacement plethysmograph for the determination of Japanese body composition. Diabetes, Obes Metab. 1999;1(6):347–51. DOI:10.1046/j.1463-1326.1999.00064.x

Ritz P, Sallé A, Audran M, Rohmer V. Comparison of different methods to assess body composition of weight loss in obese and diabetic patients. Diabetes Res Clin Pract. 2007;77(3):405–11. DOI: 10.1016/j.diabres.2007.01.007

Goosey-Tolfrey V, Keil M, Brooke-Wavell K, de Groot S. A Comparison of methods for the estimation of body composition in highly trained wheelchair games players. Int J Sports Med. 2016;37(10):799–806. DOI:10.1055/s-0042-104061

Gibson AL, Heyward VH, Mermier CM, Janot JM, Wilmerding MV. Comparison of DXA, Siri’s 2C, and Lohman’s Db-Mineral models for estimating the body fat of physically active adults. Int J Sport Nutr Exerc Metab. 2004;14(6):657–72. DOI: 10.1123/ijsnem.14.6.657

Deurenberg P, Leenen R, Van der Kooy K, Hautvast JG. In obese subjects the body fat percentage calculated with Siri’s formula is an overestimation. Eur J Clin Nutr. 1989;43(8):569–75.

Vescovi JD, Zimmerman SL, Miller WC, Fernhall B. Effects of clothing on accuracy and reliability of air displacement plethysmography. Med Sci Sports Exerc. 2002;34(2):282–5. DOI: 10.1097/00005768-200202000-00016

Hull HR, Fields DA. Effect of short schemes on body composition measurements using Air-Displacement Plethysmography. Dyn Med. 2005;4(1):8. DOI:10.1186/1476-5918-4-8

Frisard MI, Greenway FL, DeLany JP. Comparison of methods to assess body composition changes during a period of weight loss. Obes Res. 2005;13(5):845–54. DOI:10.1038/oby.2005.97

Weyers AM, Mazzetti SA, Love DM, Gómez Anal, Kraemer WJ, Volek JS. Comparison of methods for assessing body composition changes during weight loss. Med Sci Sport Exerc. 2002;34(3). DOI: 10.1097/00005768-200203000-00017

Minderico CS, Silva AM, Teixeira PJ, Sardinha LB, Hull HR, Fields DA. Validity of air-displacement plethysmography in the assessment of body composition changes in a 16-month weight loss program. Nutr Metab (Lond) 2006;3(1):32. DOI:10.1186/1743-7075-3-32

Pietrobelli A, Wang Z, Formica C, Heymsfield SB. Dual-energy X-ray absorptiometry: fat estimation errors due to variation in soft tissue hydration. Am J Physiol. 1998;274(5):E808-16. DOI: 10.1152/ajpendo.1998.274.5.E808

Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol Metab. 1996;271(6):E941–51. DOI: 10.1152/ajpendo.1996.271.6.E941

Al Yafi M, Nasif A, Glosser LD, Ren G, Ahemd A, Nazzal M, et al. The relationship between lower extremity amputation and body mass index. Vascular. 2022;170853812210878. DOI:10.1177/ 17085381221087824

Published

2023-11-10