Parasitic Disease and COVID-19 Syndemics in Indonesia: Biomedical Aspects

Authors

  • Reqgi First Trasia Universitas Sultan Ageng Tirtayasa

DOI:

https://doi.org/10.33086/iimj.v5i1.5068

Keywords:

syndemics, Covid-19, biomedical, Parasitic Disease, Tropical disease

Abstract

Background: Syndemics happened while two or more coinfections have dangerous interaction and lead to a harmful outcome than for either single infection. In Indonesia, during COVID-19 pandemic, it has deal with a doble burden presume to neglected tropical disese (NTD) control. Parasitic disease as a part of NTD must be a concern in Indonesia along pandemc. There are still few articles that review the biomedical aspects of co-infection COVID-19 with parasitic diseases in Indonesia, whereas an understanding of biomedical aspects can encourage knowledge about pathogenesis which will make an earlier diagnosis.

Results: This review summarize how parasites may serve as protective agents or risk factors in pandemic and, vice versa, how the COVID-19 may disturb the prevention and misdiagnosis of parasitic disease in Indonesia. Co-infection COVID-19 with malaria increass the burden of severe clinical manifestations and poor prognosis due to exaggerated proinflammatory response. Coinfection triggers TNF and IL-6 to activate coagulation cascade leading to micro-thrombosis and coagulopathy. Besides, helminthiasis causes vary configuration of immune-modulation, thereby lowering susceptibility to other infections and tolerating COVID-19 better. They modify Th2 respons to limit pro-inflammatory cytokines, such as IL-6 which is observed in severe cases of COVID-19. T-cell hypoactivation in SARS-CoV-2 and W.bancrofti will cause  relatively mild manifestation of COVID-19.

Conclusions: In parasite infection, the IL-4 may elevate and induce shadow memory CD8+ T-cell (TVM cell) for CD8 response rapidly agains virus. It control human IL-4 or IL-10 that leads to the maturation of Th2 cells and down-regulation of the inflamation respons of IFN-g, IL-17 and TNF-a. These mechanisms allow us to blockade the cytokines storms observed in COVID-19 cases.

Downloads

Download data is not yet available.

References

Ajibola O, Gulumbe BH, Eze AA, Obishakin E. Tools for detection of schistosomiasis in resource limited settings. Med Sci (Basel) 6: 39 (2018) DOI: https://doi.org/10.3390/medsci6020039

Centres for Disease Control and Prevention. Parasite Schistosomiasis. https://www.cdc.gov/parasites/schistosomiasis/disease Accessed September 7th, 2022

Cheepsattayakorn A, Cheepsattayakorn R. Parasitic pneumonia and lung involvement. Biomed Res Int. (2015) 874021 DOI: https://doi.org/10.15406/jlprr.2015.03.00071

Cimino RO, Fleitas P, Fernandez M, Echazu A, Juarez M, Floridia-Yapur N, Cajal P, et al. Seroprevalence of the Strongyloides stercoralis infection in human from Yungas Rainforest and Gran Chaco Region from Argentina and Bolivia. Pathogens (2020) 9, 394 DOI: https://doi.org/10.3390/pathogens9050394

Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet 383: 2253-64 (2015) DOI: https://doi.org/10.1016/S0140-6736(13)61949-2

Fauziah S, Putri SMD, Salma Z, Wardhani HR, Hakim FKN, Sucipto TH, Aquaresta F, et al. How should Indonesia consider its neglected tropical diseases in the COVID-19 era? Hopes and challenges (Review). Biomed Rep 14:53 (2021) DOI: https://doi.org/10.3892/br.2021.1429

Fonte L, Acosta A, Sarmiento ME, Ginori M, Garcia G, Norazmi MN. COVID-19 Lethality in Sub-Saharan Africa and Helminth Immune modulation. Front Immunol (2020) 11, 574910 DOI: https://doi.org/10.3389/fimmu.2020.574910

Gluchowska K, Dzieciatkowski T, Sedzikowska A, Deniziak AZ, Mlociki D. The new status of parasitic disease in the COVID-19 pandemic – Risk factors or protective agents? J Clin Med (2021) 10:2533 DOI: https://doi.org/10.3390/jcm10112533

Gomes LR, Martins YC, Ferreira-Da-Cruz MF, Daniel-Ribeiro CT. Autoimmunity, phospholipid-reacting antibodies and malaria immunity. Lupus. (2015) 23:1295-8 DOI: https://doi.org/10.1177/0961203314546021

Gostic KM, Gomez ACR, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. Elife (2020) 9:e55570 DOI: https://doi.org/10.7554/eLife.55570

Gutman JR, Lucchi NW, Cantey PT, Steinhardt LC, Samuels AM, Kamb ML, Kapella BK, et al. Malaria and parasitic neglected tropical disease: potential syndemics with COVID-19? Am J Trop Hyg 103: 572-7 (2020) DOI: https://doi.org/10.4269/ajtmh.20-0516

Hussein MIH, Albashir AAD, Elawad OAMA, Homeida A. Malaria and COVID-19: unmasking their ties. Malar J (2020) 19:457 DOI: https://doi.org/10.1186/s12936-020-03541-w

Indonesia Ministry of Development Planning and Agency: Bappenas. Siaran Pers Roadmap Eradikasi Schistosomiasis (2018) Wujud komitmen Pemerintah atasi penyakit demam keong, Jakarta, Indonesia.

Indonesian Ministry of Health: COVID-19, https://covid19.go.id/ Accessed September 1st, 2022

Indonesian Ministry of Health: Data dan Informasi Profil Kesehatan Indonesia 2020. Jakarta, pp1-213 (2021)

Indonesian Ministry of Health: Profil Kesehatan Indonesia tahun 2019, pp107-8 (2019)

Indonesian Ministry of Health: Situasi Filariasis di Indonesia. Infodatin Pusat Data dan Informasi Kementerian Kesehatan RI. Pp1-12 (2020)

Indonesian Ministry of Health. Panduan pelayanan kesehatan balita pada masa tanggap darurat COVID-19. Kementerian kesehatan Indonesia, pp 1-30, 2020.

Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses (2020) 12;372 DOI: https://doi.org/10.3390/v12040372

Karanam LSK, Basavraj GK, Papireddy CKR. Strongyloides stercoralis hyper infection syndrome. Indian J Surg (2020) 12,1-5 DOI: https://doi.org/10.1007/s12262-020-02292-x

Kurniati M, Budiono B, Sulistyawati SW: Intestinal protozoa infection in relation to nutritional status of the students Mandangin Island elementary school 6 in Sampang Regency. JUXTA J Ilm Mhs Kedokt Univ Airlangga 10: 25 (2020) DOI: https://doi.org/10.20473/juxta.V10I12019.25-28

Lamberton PHL, Jourdan PM. Human ascariasis: Diagnostic update. Curr Trop Med Rep. (2016) 2, 189-200 DOI: https://doi.org/10.1007/s40475-015-0064-9

Lier AJ, Tuan JJ, Davis MW, Paulson N, McManus D, Campbell S, Peaper DR, et al. Case report: Disseminated Strongyloidiasis in a patient with COVID-19. Am J Trop Med Hyg (2020) 103, 1590-2 DOI: https://doi.org/10.4269/ajtmh.20-0699

Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe COVID-19 infections: a meta-analysis. Clin Chim Acta (2020) 506;145-8 DOI: https://doi.org/10.1016/j.cca.2020.03.022

lyazar IR, Surendra H, Ekawati L, Djaafara BA, Nurhasim A, Hidayana I, Widyastuti W, et al. Excess mortality during the first ten months of COVID-19 Epidemic at Jakarta, Indonesia. medRxiv 69:1-13, (2022) DOI: https://doi.org/10.1016/j.ijid.2023.04.089

Maizels RM. Regulation of immunity and allergy by helminth parasites. Allergy (2020) 75, 524-34 DOI: https://doi.org/10.1111/all.13944

Malizia V, Giardina F, Vegvari C, Bajaj S, McRae-McKee K, Anderson RM, de Vlas, et al. Modelling the impact of COVID-19 related control programme interruptions on progress towards the WHO 2030 target for soil transmitted helminths. Trans R Soc Trop Med Hyg. (2021), 115, 253-60. DOI: https://doi.org/10.1093/trstmh/traa156

Marchese V, Crosato V, Gulletta M, Castelnuovo F, Cristini G, Matteelli A, Castelli F. Strongyloides infection manifested during immunosuppresive therapy for SARA-CoV-2 penumonia. Infection (2020) 1-4 DOI: https://doi.org/10.1007/s15010-020-01522-4

Martindale S, Mableson HE, Kebede B, Kiros FH, Tamiru A, Mengistu B, Krueger A, et al. A comparison between paper-based and m-Health tools for collecting and reporting clinical cases of lymphatic filariasis and podoconiosis in Ethiopia. mHealth 4: 49 (2018) DOI: https://doi.org/10.21037/mhealth.2018.09.12

Mau F. Prevalence and intensity of soil-transmitted helminth infections among elementary school students in West Sumba and Central Sumba districts East Nusa Tenggara, Indonesia. J Med Sci Clin Res 5 (2018) DOI: https://doi.org/10.18535/jmscr/v5i10.88

Mohamed MFH, Mohamed SF, Yousaf Z, Kohla S, Howady F, Imam Y. COVID-19 unfolding filariasis: The first case of SARS-CoV-2 and Wuchereria bancrofti coinfection. Plos Negl Trop Dis. (2020) 14, e0008853. DOI: https://doi.org/10.1371/journal.pntd.0008853

Mullerpattan JB, Udwadia ZF, Udwadia FE. Tropical pulmonary eosinophilia – A review. Indian J Med Res. (2015), 138, 295-302

Nelwan ML. Schistosomiasis: Life cycle, diagnosis, and control. Curr Ther Res Clin Exp 91: 5-9 (2019) DOI: https://doi.org/10.1016/j.curtheres.2019.06.001

Niemann T, Marti H, Duhnsen S, Bongartz G. Pulmonary schistosomiasis – Imaging features. J Radiol Case Rep (2011) 4, 37-43 DOI: https://doi.org/10.3941/jrcr.v4i9.482

Nurwidayati A, Frederika PP, Sudomo M. Fluktuasi schistosomiasis di daerah endemis provinsi Sulawesi Tengah tahun 2011-2018. Buletein penelitian kesehatan 47: 199-206 (2019) DOI: https://doi.org/10.22435/bpk.v47i3.1276

Sanklecha M, Mehta N, Bagban H. Varied presentation of complicated falciparum malaria in a family. Indian Pediatrics (2013) 49, 413-4

Scheer S, Krempl C, Kallfass C, Frey S, Jakob T, Mouahid G, Mone H, et al. Schistosoma mansoni Bolsters Anti-viral immunity in the murine respiratory tract. PLoS ONE. (2015) DOI: https://doi.org/10.1371/journal.pone.0112469

Sherrad-Smith E, Hogan AB, Hamlet A, Watson OJ, Whittaker C, Winskill P, Ali F, Mohammad AB, et al. The potential public health consequences of COVID-19 on malaria in Africa. Nat Med (2020) 26,1411-6. DOI: https://doi.org/10.1038/s41591-020-1025-y

Siles-Lucas M, Gonzalez-Miguel J, Geller R, Sanjuan R, Perez-Arevalo J, Martinez-Moreno A. Potential influence of Helminth moleculeson COVID-19 pathology. Trends Parasitol. (2021) 37, 11-4 DOI: https://doi.org/10.1016/j.pt.2020.10.002

Ssebambulidde K, Segawa I, Abuga KM, Nakate V, Kayiira A, Ellis J, Tugume L, et al. Parasites and their protection against COVID-19, Ecology or Immunology? MedRxiv (2020) DOI: https://doi.org/10.1101/2020.05.11.20098053

Stauffer WM, Alpern JD, Walker PF. COVID-19 and Dexamethasone: a potential strategy to avoid steroid-related strongyloides hyperinfection. JAMA (2020) 324, 623 DOI: https://doi.org/10.1001/jama.2020.13170

Tan X, Cheng M, Zhang J, Chen G, Liu D, Liu Y, Liu H. Hookworm infection caused acute intestinal bleeding diagnosed by capsule: a case report and literature review. Korean J Parasitol. (2018) 55, 417-20. DOI: https://doi.org/10.3347/kjp.2017.55.4.417

Trasia RF. Covid-19 dan Koinfeksi Penyakit Parasit. Med Hospitalia J Clin Med 7: 298-303 (2020) DOI: https://doi.org/10.36408/mhjcm.v7i1A.471

WHO: 2030 Targets for soil-transmitted helminthiasis control programmes. 2021.

WHO: Lymphatic Filariasis. https://www.who.int/health-topics/lymphatic-filariasis Accessed September 4th, 2022.

WHO: WHO issues interim guidance for implementation of NTD programmes. https://www.who.int/neglected_disease/news/LF-reporting-continued-progress-towards-elimination Accessed September 6th, 2022.

WHO. Coronavirus Disease 2019 situation report, 48. WHO 19:1-20, (2022)

WHO. Responding to community spread of COVID-19. Interim Guide 8 March 2020;1-6

WHO. Tailoring malaria interventions in the COVID-19 response. https://www.who.int/publications/m/item/tailoring-malaria-interventions-in-the-covid

World Health Organization and the United Nations Children’s Fund (UNICEF): Community-Based Health Care, including Outreach and Campaigns, in the context of the COVID-19 Pandemic. Geneva, p39, 2020.

World Health Organization. Neglected tropical disease. Accessed August 2022 https://www.who.int/neglected_disease.

Downloads

Published

2023-12-28

How to Cite

Trasia, R. F. (2023). Parasitic Disease and COVID-19 Syndemics in Indonesia: Biomedical Aspects. International Islamic Medical Journal, 5(1), 58–77. https://doi.org/10.33086/iimj.v5i1.5068

Issue

Section

Articles