INCREASE IN THE ACCUMULATION OF DRY BIOMASS OF CEREAL BIOENERGY CULTURES WITH MYCORIZATION OF THEIR ROOT SYSTEM

Keywords: vesicular-arbuscular fungi, plant bacteria, yield, biological products, root application.

Abstract

Purpose. To find out the effect of mycorrhization of the root system of cereal bioenergy crops – giant miscanthus and switchgrass – on the accumulation of dry biomass. Methods. Field, laboratory, and statistical. Results. According to the research data, application of vesicular-arbuscular fungi Tuber melanosporum VITTAD. and Trichoderma harzianum RIFAI (biological products Mycofriend and Mikovital) and Bacillus subtilis Cohn. (biological product Florobacillin) for seed treatment contributes to a significant increase in the accumulation of dry biomass in cereal bioenergy crops, such as switchgrass (Panicum virgatum L.) and giant miscanthus (Miscanthus × gigantheus). In particular, in the treatments with Mycofriend (fungus Trichoderma harzianum RIFAI), the yield of dry biomass in switchgrass was 10.57 t/ha, which is 29.3 % higher than in the control. In the treatments with Florobacillin (bacteria Bacillus subtilis Cohn.) and Mikovital (fungus Tuber melanosporum VITTAD.), the yield was higher by 13.1 t/ha (22.8 %) than in the control. The yield of dry biomass of giant miscanthus in the treatments with Mycofriend (Trichoderma harzianum RIFAI) was 34.9 t/ha, which is 21.0 % higher than in the control. In the treatments with Florobacillin (bacteria Bacillus subtilis Cohn.) and Mikovital (fungus Tuber melanosporum VITTAD.), the yield was by 6.0 t/ha (14.2 %) higher than in the control. Conclusions. Root application of mycorrhizal fungi and nitrogen-fixing bacteria contributes to a significant increase in the accumulation of dry biomass of cereal bioenergy crops – switchgrass and giant miscanthus. In the experiments with root application of mycorrhizal fungi and nitrogen-fixing bacteria, the photosynthetic potential was 4.0–21.9 % higher than in the control. In the experiments with root application of mycorrhizal fungi and nitrogen-fixing bacteria, the net productivity of photosynthesis was 3.6–22.0 % higher than the control. In the experiments with root application of mycorrhizal fungi and nitrogen-fixing bacteria, the leaf area was 4.2–19.0 % higher than in the control. In the experiments with root application of mycorrhizal fungi and nitrogenfixing bacteria, the mass of leaves was 7.8–28.6 % than in control.

References

1. Ambavaram, M.M., Ali, A., Ryan, K.P., Peoples, O., Snell, K.D., & Somleva, M.N. (2018). Novel transcription factors PvBMY1 and PvBMY3 increase biomass yield in greenhouse-grown switchgrass (Panicum virgatum L.). Plant Science, 273, 100–109. doi: 10.1016/j.plantsci.2018.04.003.
2. Barbash, V.A., Zinchenko, V.O., & Trembus, I.V. (2012). Resursozberihaiuchi tekhnolohii pereroblennia stebel miskantusa [Resource-saving technologies for processing miscanthus stems]. Naukovi visti NTUU “KPI”, 5, 118–123 (in Ukrainian).
3. Battaglia, M., Fike, J., Fike, W., Sadeghpour, A., & Diatta, A. (2019). Miscanthus × giganteus biomass yield and quality in the Virginia Piedmont. Grassland Science, 65(4), 233–240. doi: 10.1111/grs.12237.
4. Baute, K., Van Eerd, L.L., Robinson, D.E., Sikkema, P.H., Mushtaq, M., & Gilroyed, B.H. (2018). Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus × giganteus and Panicum virgatum Grown in Canada. Energies, 11(9), 2198. doi: 10.3390/en11092198.
5. Dubis, B., Jankowski, K.J., Załuski, D., & Sokólski, M. (2020). The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process. Energy, 206, 118189. doi: 10.1016/j. energy.2020.118189.
6. Durczak, K., Adamski, M., Mitkowski, P.T., Szaferski, W., Gulewicz, P., & Majtkowski, W. (2018). Chemical processing of switchgrass (Panicum virgatum) and grass mixtures in terms of biogas yield in Poland. In Practical Aspects of Chemical Engineering. Springer, Cham. 85–99. doi: 10.1007/978-3-319-73978-6_6.
7. Ermantraut, E.R., Hoptsii, T.I., Kalenska, S.M., Kryvoruchko, R.V., Turchynova, N.P., & Prysiazhniuk, O.I. (2014). Metodyka selektsiinoho eksperymentu (v roslynnytstvi) [Methods of selection experiment (in crop production)]. KhNAU, Kharkiv, 229 (in Ukrainian).
8. Gołąb-Bogacz, I., Helios, W., Kotecki, A., Kozak, M., & Jama-Rodzeńska, A. (2020). The influence of three years of supplemental nitrogen on above- and belowground biomass partitioning in a decade-old Miscanthus × giganteus in the Lower Silesian Voivodeship (Poland). Agriculture, 10(10), 473. doi: 10.3390/agriculture10100473.
9. Guan, C., Li, X., Tian, D.Y., Liu, H.Y., Cen, H.F., Tadege, M., & Zhang, Y.W. (2020). ADP-ribosylation factors improve biomass yield and salinity tolerance in transgenic switchgrass (Panicum virgatum L.). Plant Cell Reports, 39(12), 1623–1638. doi: 10.1007/s00299-020-02589-x. 10. Heletukha, H.H., Zheliezna, T.A., & Tryboi, O.V. (2014). Perspektyvy vyroshchuvannia ta vykorystannia enerhetychnykh kultur v Ukraini [Prospects for growing and using energy crops in Ukraine]. UAB analytical note. No.
10. Bioenerhetychna asotsiatsiia Ukrainy, Kyiv, 33. Retrieved from http://uabio.org/img/files/docs/position-paper-uabio-10-ua. pdf (in Ukrainian).
11. Heletukha, H.H., Zheliezna, T.A., Kucheruk, P.P., & Oliinyk, Ye.M. (2014). Suchasnyi stan ta perspektyvy rozvytku bioenerhetyky v Ukraini [Current state and prospects of bioenergy development in Ukraine]. UAB analytical note. No. 9. Bioenerhetychna asotsiatsiia Ukrainy, Kyiv, 32. Retrieved from: http://uabio.org/img/files/docs/position-paper-uabio-9-ua. pdf (in Ukrainian).
12. Ivakhiv, V. (2012). Enerhetychna verba yak rishennia dlia malykh mist Ukrainy [Energy willow as a solution for small towns of Ukraine]. Ukrainska enerhetyka. Retrieved from: http://ua-energy.org/post/27476 (in Ukrainian).
13. Khivrych, O.B., Kvak, V.M., Kaskiv, V.V., Mamaisur, V.V., & Makarenko, A.S. (2011). Enerhetychni roslyny yak alternatyva tradytsiinym vydam palyva [Energy plants as an alternative to traditional fuels]. Ahrobiolohiia, 6, 153–157 (in Ukrainian).
14. Kulyk, M., Rozhko, I., Kurylo, V., Bulgakov, V., Ivanovs, S., & Adamovics, A. (2018). Impact of the soil and climate conditions on the formation of the crop yield and germinating power of the switchgrass (Panicum virgatum L.) seeds. Journal of Research and Applications in Agricultural Engineering, 63(4), 101–105.
15. Kulyk, M.I. (2012). Vplyv umov vyroshchuvannia na kilkisni pokaznyky roslyn svitchhrasu (Panicum virgatum L.) pershoho roku vehetatsii [The influence of growing conditions on the quantitative parameters of switchgrass (Panicum virgatum L.) in the first vegetation year]. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii, 3, 62–67. doi: 10.31210/ visnyk2012.03.12 (in Ukrainian).
16. Kulyk, M.I., Rakhmetov, D.B., Rozhko, I.I., & Syplyva, N.O. (2019). The study of the varietal specimens of switchgrass (Panicum virgatum L.) on a complex of useful signs in the Central Forest-Steppe of Ukraine conditions. Plant Varieties Studying and Protection, 15(4), 354–364. doi: 10.21498/2518-1017.15.4.2019.188549 (in Ukrainian).
17. Lin, C.Y., Donohoe, B.S., Bomble, Y.J., Yang, H., Yunes, M., Sarai, N.S. & Himmel, M.E. (2021). Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (Panicum virgatum L.) biomass. Biotechnology for Biofuels, 14(1), 1–15. doi: 10.1186/s13068-021-01891-4.
18. Mazur, V.A., Branitskyi, Yu.Yu., & Polishchuk, I.S. (2017). Osoblyvosti vyroshchuvannia prosa lozovydnoho v umovakh Lisostepu Pravoberezhnoho [Features of growing millet vine in the Forest-Steppe right-bank]. Zbirnyk naukovykh prats VNAU. Silske hospodarstvo ta lisivnytstvo, 7, 19–26 (in Ukrainian).
19. Ouattara, M.S., Laurent, A., Barbu, C., Berthou, M., Borujerdi, E., Butier, A. & Loyce, C. (2020). Effects of several establishment modes of Miscanthus × giganteus and Miscanthus sinensis on yields and yield trends. GCB Bioenergy, 12(7), 524–538. doi: 10.1111/gcbb.12692.
20. Roik, M.V., Humentyk, M.Ya., & Mamaisur, V.V. (2013). Perspektyvy vyroshchuvannia enerhetychnoi verby dlia vyrobnytstva tverdoho biopalyva [Prospects for growing energy willow for the production of solid biofuels]. Bioenerhetyka, 2, 18–19 (in Ukrainian).
21. Roik, M.V., Sinchenko, V.M., Ivashchenko, O.O., Pyrkin, V.I., Kvak, V.M., Humentyk, M.Ya. & Katelevskyi, V.M. (2019). Miskantus v Ukraini [Miscanthus in Ukraine]. FOP Yamchynskyi O.V., Kyiv, 256 (in Ukrainian).
22. Romanchuk, L.D., Zinchenko, V.O., & Vasyliuk, T.P. (2014). Osoblyvosti vyroshchuvannia enerhetychnykh kultur v umovakh Polissia Ukrainy [Features of growing energy crops in Polissia of Ukraine]. In O. V. Skydan (Ed.), Perspektyvy rozvytku alternatyvnoi enerhetyky na Polissi Ukrainy [Prospects for the development of alternative energy in Polissia of Ukraine]. Tsentr uchbovoi literatury, Kyiv, 81–111 (in Ukrainian).
23. Shepherd, A., Littleton, E., Clifton-Brown, J., Martin, M., & Hastings, A. (2020). Projections of global and UK bioenergy potential from Miscanthus × giganteus – Feedstock yield, carbon cycling and electricity generation in the 21st century. GCB Bioenergy, 12(4), 287–305. doi: 10.1111/gcbb.12671.
24. Szulczewski, W., Żyromski, A., Jakubowski, W., & Biniak-Pieróg, M. (2018). A new method for the estimation of biomass yield of giant miscanthus (Miscanthus giganteus) in the course of vegetation. Renewable and Sustainable Energy Reviews, 82(2), 1787–1795. doi: 10.1016/j.rser.2017.07.057.
25. Taranenko, A., Kulyk, M., Galytska, M., & Taranenko, S. (2019). Effect of cultivation technology on switchgrass (Panicum virgatum L.) productivity in marginal lands in Ukraine. Acta Agrobotanica, 72(3), 1786. doi: 10.5586/aa.1786.
26. Tejera, M., Boersma, N., Vanloocke, A., Archontoulis, S., Dixon, P., Miguez, F., & Heaton, E. (2019). Multi-year and multi-site establishment of the perennial biomass crop Miscanthus × giganteus using a staggered start design to elucidate N response. BioEnergy Research, 12(3), 471–483. doi: 10.1007/s12155-019-09985-6.
27. Tsyganov, A.R., & Klochkov, A.V. (2012). Bioenergetika: energeticheskie vozmozhnosti biomassy [Bioenergy: the energy potential of biomass]. Belarusskaya nauka, Minsk, 143 (in Russian).
28. von Cossel, M., Mangold, A., Iqbal, Y., Hartung, J., Lewandowski, I., & Kiesel, A. (2019). How to generate yield in the first year – A three-year experiment on miscanthus (Miscanthus × giganteus (Greef et Deuter)) establishment under maize (Zea mays L.). Agronomy, 9(5), 237. doi: 10.3390/agronomy9050237.
29. Yastremskaya, L.S., Pryshlyak, R.I., & Fedonyuk, Y.V. (2017). Miskantus – enerhetychna kultura dlia otrymannia biopalyva [Miscantus – energy culture for the production of biofuel]. Problemy ekolohichnoi biotekhnolohii, 1. doi: 10.18372/2306-6407.1.11665 (in Ukrainian).
30. Zhang, B., Hastings, A., Clifton-Brown, J. C., Jiang, D., & Faaij, A.P. (2020). Modeled spatial assessment of biomass productivity and technical potential of Miscanthus × giganteus, Panicum virgatum L., and Jatropha on marginal land in China. GCB Bioenergy, 12(5), 328–345. doi: 10.1111/gcbb.12673.
31. Zhang, J., Wen, W., Li, H., Lu, Q., Xu, B., & Huang, B. (2020). Overexpression of an aquaporin gene PvPIP2; 9 improved biomass yield, protein content, drought tolerance and water use efficiency in switchgrass (Panicum virgatum L.). GCB Bioenergy, 12(11), 979–991. doi: 10.1111/gcbb.12751.
Published
2022-05-24
How to Cite
Dymytrov, S. H., & Sabluk, V. T. (2022). INCREASE IN THE ACCUMULATION OF DRY BIOMASS OF CEREAL BIOENERGY CULTURES WITH MYCORIZATION OF THEIR ROOT SYSTEM. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 46(4), 3-8. https://doi.org/10.32845/agrobio.2021.4.1