Approximate boundary conditions for electromagnetic fields in electrodmagnetics

Serhii Berdnyk, Andrey Gomozov, Dmitriy Gretskih, Viktor Kartich, Mikhail Nesterenko

Abstract


The results of an analytical review of literature sources on the use of approximate boundary conditions for electromagnetic fields of impedance type in solving boundary value problems of electromagnetism for more than 80 recent years are presented. During this period, the impedance approach was generalized to various electrodynamic problems, in which its use made it possible to significantly expand the limits of mathematical modeling, which adequately considers the physical properties of real boundary surfaces. More than eighty years have passed since the publication of approximate boundary conditions for electromagnetic fields. The meaning and value of these conditions lies in the fact that they allow solving diffraction problems about fields outside well-conducting bodies without considering the fields inside them, which greatly simplifies the solution. Since then, numerous publications have been devoted to the application of impedance boundary conditions, the main of which (according to the authors) are presented in this paper. Particular attention is paid to the characteristics of electrically thin impedance vibrators and film-type surface structures as a personal contribution of the authors to the theory of impedance boundary conditions in electromagnetism. The subject of research in this article is the analysis of the limits and conditions for the correct application of impedance boundary conditions. The goal is to systematize the results of using the concept of approximate impedance boundary conditions for electromagnetic fields in problems of electrodynamics based on an analytical review of literature sources. The following results were obtained. The types of metal-dielectric structures are presented, for which methods of theoretical determination of the values of surface impedances for film-type structures are currently known, which are the most promising for creating technological control elements on their basis in centimeter and millimeter wavelength devices. Conclusions. The materials of this paper do not pretend to be a complete reference book covering all the results and aspects of the development of the concept of approximate impedance type boundary conditions in problems of electromagnetism over the past decades. Simultaneously, the authors hope that the information presented in this paper will be useful to specialists in the field of theoretical and applied electrodynamics, as well as graduate students, young scientists and students who are just mastering radiophysics and radio engineering specialties.

Keywords


impedance approach; impedance-type boundary conditions; surface impedance; effective impedance; impedance surface

Full Text:

PDF

References


Shchukin, А. N. Propagation of Radio Waves, Moscow, Svyaz'izdat Publ., 1940. 399 p. (in Russian).

Leontovich, M. A. On approximate boundary conditions for an electromagnetic field on the surface of well-conducting bodies. Radio Wave Propagation Studies, 1948, pp. 5-12. (in Russian).

Rytov, S. М. Calculation of the skin-effect by the perturbation method. Journal of Experimental and Theoretical Physics, 1940, vol. 10, iss. 2, pp. 180-190. (in Russian).

Miller, М. А., Talanov, V. I. Using the concept of surface impedance in the theory of surface electromagnetic fields (overview). Izv. Vuz. Radiophysics, 1961, vol. 4, iss. 5, pp. 795-830. (in Russian).

Ilyinsky, А. S., Kravtsov, V. V., Sveshnikov, A. G. Mathematical Models of Electrodynamics. Moscow, Visshaya shkola Publ. 224 p. (in Russian).

Feinberg, Е. L. Propagation of Radio Waves along the Earth’s Surface. Moscow, Fizmatlit Publ., 1999. 496 p. (in Russian).

Il'inskiy, A. S., Slepyan, G. Ya. Impedance boundary conditions and their application for calculating the absorption of electromagnetic waves in conducting media. Radiotekhnika i Elektronika (ISSN 0033-8494), 1990, vol. 35, pp. 1121-1139.

Senior, T. B. A., Volakis, J. L. Approximate Boundary Conditions in Electromagnetics. IEEE, London, 1995. 363 p. DOI: 10.1049/PBEW041E.

Hoppe, D. J., Rahmat-Samii, Y. Impedance Boundary Conditions in Electromagnetics. Taylor & Fransic Group, Boca Ratum, 1995. 262 p. DOI: 10.1201/9781315215365.

Tretyakov, S. Analytical Modeling in Applied Electromagnetics. Artech House Publ., 2003. 272 p.

Yuferev, S. V., Ida, N. Surface Impedance Boundary Conditions. A Comprehensive Approach. CRC Press Publ., 2009. 412 p.

Belkovich, I. V., Zheksenov, M. A., Kozlov, D. A. Comparison of options for impedance boundary conditions when a plane electromagnetic wave is incident on a dielectric half-space. Journal of Radio Electronics, 2011, no. 7. 9 p. (in Russian).

Brekhovskikh, L. M. Waves in Layered Media. New York, Academic Press Publ., 1980. 503 p.

Alshits, V. I., Lyubimov, V. N. Generalization of the Leontovich approximation for electromagnetic fields on a dielectric – metal interface. Uspekhi Fizicheskikh Nauk and P N Lebedev Physics Institute of the Russian Academy of Sciences, 2009, vol. 52, no. 8, pp. 815-820. DOI: 10.3367/UFNe.0179.200908d.0865.

Weinstein, L. А. Electromagnetic Waves. Moscow, Radio i svyaz’ Publ., 1988. 440 p. (in Russian).

Mende, F. F., Spitsyn, A. I., Kochkonyan, N. A., Skugarevski, A. V. Surface impedance of real superconducting surfaces. Cryogenics, 1985, vol. 25, no. 1, pp. 10-12. DOI: 10.1016/0011-2275(85)90086-4.

Ramo, S., Whinnery, J. G. Fields and Waves in Modern Radio. New York, J. Wiley and Sons Publ., 1944. 502 p.

Alexandrov, B. Ya., Rybalchenko, L. F., Dukin, V. V. Zone cleaning of copper. Izvestiya AN SSSR, Metals Series, 1970, vol. 4, pp. 68-75. (in Russian).

Reuter, G. E. H., Sondheimer, E. H. The theory of anomalous skin effect in metals. Proc. Roy. Soc. A, 1948, vol. 195, iss. 1042, pp. 336-364. DOI: 10.1098/rspa.1948.0123.

Chambers, R. S. The anomalous skin effect. Proc. Roy. Soc. A, 1952, vol. 215, pp. 281-292.

Hartmann, L. E., Luttsnger, J. M. Exact solution of the integral equations for the anomalous skin effect and cyclotron resonance on metal. Phys. Rev., 1966, vol. 151, pp. 430-433.

Meissner, W., Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfaig-keit. Naturwissenchaften B, 1933, vol. 33, pp. 787-788. (in German).

Bardeen, J., Cooper, L. N., Schieffer, J. R. Theory of superconductivity. Phys. Rev., 1957, vol. 108, pp. 1175-1204.

Cooper, L. N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev., 1956, vol. 108, pp. 1189-1190.

Allison, J., Benson, F. A. Surface roughness and attenuation of precision drawn, chemically polished, electro polished, electroplated and electroformed waveguides. Proc. IEEE, 1955, vol. 102, pp. 251-259.

Bass, F. G., Fuks, I. M. Wave Scattering from Statistically Rough Surfaces: International Series in Natural Philosophy Paperback. Pergamon Publ., 1979. 527 p. 10.1016/C2013-0-05724-6.

Mende, F. F., Spitsyn, A. I., Tereshchenko, N. A., et al. Measurement of the absolute value of reactive surface resistance and the depth of field penetration into superconducting lead. Journal Technical Physics, 1977, vol. 9, no. 47, pp. 1916-1923. (in Russian).

Neganov, V. А., Nefedov, E. I., Yarovoy, G. P. Modern Design Methods for Transmission Lines and Resonators on Ultra-High Frequencies. Moscow, Pedagogy-Press Publ., 1998. 328 p. (in Russian).

Efremov, V. N. Mapping and monitoring the condition of ice-rich frozen ground by radiowave impedance sounding. Proceedings of the Eighth International Symposium on Permafrost Engineering, Xi’an, China, Lanzhou University Press, 2009, pp. 331-334.

Van Loan, M. Human Body Composition. Human Kinetics, Champaign, IL. 2005. 536 p.

Tichener, J. B., Willis, S. R. The reflection electromagnetic waves from stratified anisotropic media. IEEE Trans. Antennas Propag., 1991, vol. 39, iss. 1, pp. 35-40. DOI: 10.1109/8.64432.

Penkin, D., Yarovoy, A., Janssen, G. Surface impedance model for nano-scale device communications over an interface. 19th IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), 16 nov. 2012, pp. 1-5.

King, R. W. P., Smith, G. S. Antennas in Matter: Fundamentals Theory and Applications. MIT Press, Cambridge, 1980. 884 p.

Pyatakov, A. P., Zvezdin, A. K. Magnetoelectric and multiferroic media. Uspekhi Fizicheskikh Nauk and P. N. Lebedev Physics Institute of the Russian Academy of Sciences, 2012, vol. 55, iss. 6, pp. 557-582.

Petit, R. Electromagnetic Theory of Grating. Berlin, Springer-Verlag Publ., 1980. 286 p. DOI: 10.1007/978-3-642-81500-3.

Wu, T. K. Frequency Selective Surfaces. Encyclopedia of RF and Microwave Engineering. John Wiley & Sons Publ., 2005. 331 p. DOI: 10.1002/0471654507.eme133.

Sidorchuk, N. V., Yachin, V. V. Scattering of electromagnetic waves by a batch periodic magnetodielectric layer. Radiophys. Radioastronomy, 2005, Vol. 10, iss. 1, pp. 50-61. (in Russian).

Sidorchuk, N. V. Low-frequency approximation for the problem of electromagnetic Wave Propagation in a Doubly-Periodic Magnetodielectric Layer. Telecommunications and Radio Engineering, 2003, vol. 59, no, 5&6, pp. 50-61.

Yachin, V. V., Zinenko, T. L., Kiselev, V. K. Quasistatic approximation for scattering of a plane wave by a two-period gyrotropic layer. Radiophys. Radioastronomy, 2009, vol. 14, no. 2, pp. 174-182. (in Russian).

Lindell, I. V., Sihvola, A. H., Tretyakov, S. A., Viitanen, A. J. Electromagnetic Waves in Chiral and Bi-Isotropic Media. London, Artech House Publ., 1994. 352 p.

Lindell, I. V., Sihvola, A. Self-dual boundary conditions in electromagnetics. Progress in Electromagnetics Research, 2020, vol. 167, pp. 41-54. DOI: 10.2528/PIER20031008.

Katsenelenbaum, B. Z., Korshunova, E. N., Sivov, A. N., Shatrov, A. D. Chiral electromagnetic objects. Uspekhi Fizicheskikh Nauk and P. N. Lebedev Physics Institute of the Russian Academy of Sciences, 1997, vol. 167, no. 11, pp. 1201-1212.

Lakhtakia, A., Varadan, V. K., Varadan, V. V. Time-Harmonic Electromagnetic Fields in Chiral Media. Lecture Notes in Physics, vol. 335, Berlin, Springer-Verlag Publ., 1989. 121 p. DOI: 10.1007/BFb0034453.

Neganov, V. А., Osipov, O. V. Reflective, Waveguide and Radiating Structures with Chiral Elements. Moscow, Radio i svyaz' Publ., 2006. 208 p. (in Russian).

Lakhtakia, A., Varadan, V. V., Varadan, V. K. Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects. Appl. Optics, 1985, vol. 24, iss. 23, pp. 4146-4154. DOI: 10.1364/AO.24.004146.

Lakhtakia, A., Varadan, V. V., Varadan, V. K. Field equations, Huygens’s principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media. Journal of the Optical Soc. of America A, 1988, vol. 5, iss. 2, pp. 175-184. DOI: 10.1364/JOSAA.5.000175.

Shevchenko, V. V. Diffraction on a small chiral particle. Radiotekhnika i Elektronika, 1995, vol. 40, no. 12, pp. 1777-1788. (in Russian).

Tretyakov, S. A., Mariotte, F. Maxwell Garnett modeling of uniaxial chiral composites with bianisotropic inclusions. Journal of Electromagnetic Waves and Applications, 1995, vol. 9, iss. 7-8, pp. 1011-1025. DOI: 10.1163/156939395X00695.

Prosvirnin, S. L. Transformation of polarization when waves are reflected by a microstrip array made of complex-shaped elements. Radiotekhnika i Elektronika, 1999, vol. 44, no. 6, pp. 681-686. (in Russian).

Prosvirnin, S. L. Analysis of electromagnetic wave scattering by plane periodical array of chiral strip elements. 7-th International Conference on Complex Media, 1998, pp. 185-188.

Jaggard, D., Engheta, N., Kowarz, M. W., Pelet, P., Liu J. C., Kim, Y. Periodic chiral structures. IEEE Trans. Antennas Propag., 1989, vol. 37, iss. 11, pp. 1447-1452. DOI: 10.1109/8.43564.

Prosvirnin, S. L., Zheludev, N. I. Polarization effects in the diffraction of light by a planar chiral structure. Physical Review E, 2005, vol. 71, iss. 3, article no. 037603. DOI: 10.1103/PhysRevE.71.037603.

Nesterenko, M. V., Katrich, V. A., Penkin, Yu. M., Dakhov, V. M., Berdnik, S. L. Thin Impedance Vibrators. Theory and Applications. Lecture Notes in Electrical Engineering (LNEE, volume 95), New York, Springer Science+Business Media Publ., 2011. 107 p. DOI: 10.1007/978-1-4419-7850-9.

Penkin, Yu. M., Katrich, V. A., Nesterenko, M. V., Berdnik, S. L., Dakhov, V. M. Electromagnetic Fields Excited in Volumes with Spherical Boundaries. Lecture Notes in Electrical Engineering (LNEE, volume 523), Swizerland, Springer Nature Swizerland AG, Cham, 2019. 197 p. DOI: 10.1007/978-3-319-97819-2.

Nesterenko, M. V., Katrich, V. A., Penkin, Yu. M., Berdnik, S. L., Dumin, O. M. Combined Vibrator-Slot Structures: Theory and Applications. // Lecture Notes in Electrical Engineering (LNEE, vol. 689), Swizerland, Springer Nature Swizerland AG, Cham, 2020. DOI: 10.1007/978-3-030-60177-5.

King, R. W. P., Harrison, C., Aronson, E. The imperfectly conducting cylindrical transmitting antenna. IEEE Trans. Antennas Propag., 1966, vol. 14, iss. 5, pp. 524-534. DOI: 10.1109/TAP.1966.1138753.

Hanson, G. W. Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes. IEEE Transactions on Antennas and Propagation, 2008, vol. 50, iss. 3, pp. 66-77. DOI: 10.1109/MAP.2008.4563565.

Hanson, G. W. Fundamental transmitting properties of carbon nanotube antennas. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, iss. 11, pp. 3426-3435. DOI: 10.1109/TAP.2005.858865.

Lerer, A. M., Makhno, V. V., Makhno, P. V. Calculation of properties of carbon nanotube antennas. International Journal of Microwave and Wireless Technologies, 2010, vol. 2, iss. 5, pp. 457-462. DOI: 10.1017/S1759078710000644.

Lagarkov, A. N., Kisel, V. N., Semenenko, V. N. Wide-angle absorption by the use of a metamaterial plate. Progress in Electromagnetics Research Letters, 2008, vol. 1, pp. 35-44. DOI: 10.2528/PIERL07111809.

Lagarkov, A. N., Semenenko, V. N., Basharin A. A., Balabukha, N. P. Abnormal radiation pattern of metamaterial waveguide. PIERS Online, 2008, vol. 4, no. 6, pp. 641-644. DOI: 10.2529/PIERS071220103345.

Vendik, I. B., Vendik, O. G. Metamaterials and their application in microwaves: A review. Technical Physics, 2013, vol. 58, no. 1, pp. 1-24. DOI: 10.1134/S1063784213010234.

Berdnik, S. L., Nesterenko, M. V., Penkin, Yu. M., Shulga, S. N. Testing of thin metamaterial coatings by a waveguide-slot method. II Intern. Conf. Inform. and Telecomm. Technol. and Radio Electronics, Odessa, Ukraine, 2017, pp. 287-290.

Weinstein, L. А., The Theory of Diffraction and the Factorization Method (generalized Wiener-Hopf Technique). New York, Golem Press Publ., 1969.

Gretskih, D. V., Alieksieiev, V. A. Gomozov, A. V. Katrich, V. A. Nesterenko, M. V. Mathematical model of antenna with nonlinear characteristics for calculating the electromagnetic field in the fresnel zone. Radioelectronic and Computer Systems, 2021, no. 4(100), pp. 46-58. DOI: 10.32620/reks.2021.4.04.

Vasetsky, Yu. M. Impedance boundary condition of non-uniform electromagnetic field penetration into conducting half-space. Tekhnichna elektrodynamika, 2022, no. 4, pp. 3-8.




DOI: https://doi.org/10.32620/reks.2022.3.11

Refbacks

  • There are currently no refbacks.