DOI: https://doi.org/10.32515/2664-262X.2023.7(38).2.19-27

Analysis of Scientific and Technical Innovations in the Field of Mechanical Engineering with the Identification of Regularities in the Influence of Technological Parameters

Tetiana Haikova, Dmytro Kovalchuk, Roman Haikov

About the Authors

Tetiana Haikova, Associate Professor, PhD in Technics (Candidate of Technics Sciences), Kremenchuk Mykhailo Ostrogradskyi National University, Kremenchuk, Ukraine, e-mail: tanyahaikova@ukr.net, ORCID ID: 0000-0002-6972-3210

Dmytro Kovalchuk, post-graduate, Kremenchuk Mykhailo Ostrogradskyi National University, Kremenchuk, Ukraine, e-mail: dimakovalb12@gmail.com, ORCID ID: 0009-0001-2042-6450

Roman Haikov, post-graduate, Kremenchuk Mykhailo Ostrogradskyi National University, Kremenchuk, Ukraine, e-mail: romanhaikov@ukr.net, ORCID ID: 0000-0002-9958-2607

Abstract

Based on the analysis of scientific and technical information, it established that today layered metals are one of the most modern and promising materials used in all branches of mechanical engineering and national economy. The use of bimetals allows you to achieve significant cost savings, obtain materials with unique properties, increase production efficiency and competitiveness of a wide class of parts and equipment. The purpose of the article is to analyze the methods of determining the stress state of a workpiece with heterogeneous mechanical characteristics in the process of plastic deformation and to determine the stress-strain state when drawing rectangular parts from bimetals. As a result, of unequal deformation conditions in different parts of the contour, as well as anisotropy of the mechanical properties of the workpiece material, the height of box-shaped parts is even more uneven than the height of axisymmetric parts obtained by drawing. Therefore, in the manufacturing process of such parts, cutting of the uneven edge provided. The trimming allowance depends on the relative height of the part. The bigger it is, the bigger the allowance. Since the flange naturally thickens during drawing in the corner sections of the part contour, this phenomenon taken into account when determining the gap between the punch and the die of the drawing die: in the corner sections, the gap should be greater than in the straight sections of the die contour. Extrusion of box-shaped parts from bimetals causes even greater unevenness of deformations. A different amount of deformation of the layers of the bimetallic work piece imposed on the general sign change of the voltages, which causes bending and warping of the rectilinear parts of the semi-finished product, and therefore, the impossibility of obtaining a high-quality product. Based on the analysis of the stress-strain state of the workpiece in the process of drawing bimetal. The following provisions are proposed: if the mechanical properties of the metal layers do not differ - the two-layer metal behaves like a single-layer, then the ratio of the thicknesses of the two-layer metal does not change after drawing; if the mechanical properties of the layers differ, then the ratio of the thicknesses of the two-layer metal changes after drawing. Thus, when the ratio σs1/σs2 decreases, the thickness of the first layer, which has lower mechanical properties, decreases at the output; the thickness ratio after drawing also depends on the initial ratio of metal thicknesses. Based on the analysis of the stress-strain state of the work piece during the extraction of box parts, the following methods and techniques have been determined for obtaining high-quality parts by extraction and saving material: use metals with similar mechanical properties; the desire to increase the curvature of the corner zones of the work piece; to calculate the dimensions of the work piece for the hood with the involvement of modern mathematical apparatus (potential method); use brake media instead of brake ribs; affect the center of deformation, increasing the effect of unloading tangential stresses.

Keywords

bimetal, drawing, anisotropic material, workpiece, deformation, stress, mechanical properties

Full Text:

PDF

References

1. Stebliuk, V.I., & Holiavik, O.V. (2009). Pobudova konturu zahotovky na osnovi matematychnoi modeli protsesu vytiahuvannia porozhnystykh vyrobiv korobchastoi formy [Building a workpiece contour based on a mathematical model of the process of drawing hollow box-shaped products]. Zbirnyk naukovykh prats. Obrobka metaliv tyskom – Collection of scientific works. Pressure treatment of metals, 1, 63–67 [in Ukrainian].

2. Zahorianskyi, V. H., Drahobetskyi, V. V. & Kostin, V. V. (2012). Pro vyprobuvannia midno-aliuminiievykh kompozytsii, otrymanykh plakuvanniam vybukhom. [On the testing of copper-aluminum compositions obtained by cladding by explosion]. Visnyk KrNU imeni Mykhaila Ostrohradskoho – Bulletin of Mykhailo Ostrogradsky KrNU, 5, 67-71 [in Ukrainian].

3. Titov, V.A., Borys, R.S. & Tryvailo, M.S. (2009). Napriamky rozvytku sposobiv vyhotovlennia bimetalevykh trubchastykh elementiv z riznoridnykh materialiv vytiahuvanniam [Directions for the development of methods of manufacturing bimetallic tubular elements from dissimilar materials by drawing]. Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy Kyivskyi politekhnichnyi instytut, seriia Mashynobuduvannia - Bulletin of the National Technical University of Ukraine, Kyiv Polytechnic Institute, Mechanical Engineering series, 56, 154–159 [in Ukrainian].

4. Miyazaki, S., Kumai, S., Sato, A. (2005). Plastic deformation of Al–Cu–Fe quasicrystals embedded in Al2Cu at low temperatures. Mater Sci Eng. A 300–5. P. 400–401 [in Englesh].

5. Puzyr, R.H. (2012). Plastychna deformatsiia materialiv, shcho maiut rizni mekhanichni vlastyvosti. [Plastic deformation of materials with different mechanical properties.]. Modern power plants on transport and technologies and equipment for their maintenance: Vseukrainska naukovo-praktychna konferentsiia (Kherson) – All-Ukrainian Science and Practice Conf, (pp.137–139) . Kherson : Khersonska derzhavna morska akademiia [in Ukrainian].

6. Haikovaб T.V. (2016). Kintseva-elementna model deformuvannia bimetalichnoi zahotivli pry otrymanni vytiazhkoiu korobchastykh detalei [Finite-element model of deformation of a bimetallic billet when boxed parts are produced by a drawing machine]. Visnyk natsionalnoho tekhnichnoho universytetu KhPI – Bulletin of the KhPI National Technical University, 30 (1202), 21–25 [in Ukrainian].

7. Kozlov, L.H., Syvak, I.O., Shevchuk, Ye.I. & Kovalchuk, V.A. (2017). Rotatsiina vytiazhka visesymetrychnykh detalei z vykorystanniam mekhatronnoho pryvodu [Rotary extraction of axisymmetric parts using a mechatronic drive]. Visnyk Vinnytskoho politekhnichnoho instytutu – Bulletin of the Vinnytsia Polytechnic Institute, 1, 93-98 [in Ukrainian].

8. Tenckhoff, E. (2005). Review of the mechanism of deformation, texture and mechanical anisotropy in materials during drawing with thinning of thick-walled axisymmetric workpieces. Journal of ASTM International, Vol. 2, P. 1 [in Englesh].

9. Anishchenko, A.S. (2013). Prohresyvni tekhnolohichni rishennia v obrobtsi metaliv tyskom [Advanced technological solutions in metal forming]. Mariupol: DVNZ PDTU [in Ukrainian].

10. Kholiavik, O.V., Melenchuk, Yu.P., Vyshnevskyi, P.S. & Orliuk, M.V. (2014). Porivniannia parametriv NDS pry vytiahuvanni kvadratnykh u plani korobchastykh vyrobiv iz zahotovok, rozrakhovanykh inzhenernym metodom ta metodom potentsialu [Comparison of VAT parameters when drawing square box products from blanks calculated by the engineering method and the potential method]. Theoretical and practical problems in the processing of materials by pressure and the quality of professional education: V Mizhnarodna naukovo-tekhnichna konferentsiia (Kyiv) – V International Scientific and Technical Conference (p.132). Kyiv: NTUU KPI [in Ukrainian].

Citations

  1. Стеблюк В. І., Холявік О. В. Побудова контуру заготовки на основі математичної моделі процесу витягування порожнистих виробів коробчастої форми. Збірник наукових праць. Обробка металів тиском. 2009. №1 (20). С. 63–67.
  2. Загорянський В. Г., Драгобецький В. В., Костін В. В Про випробування мідно-алюмінієвих композицій, отриманих плакуванням вибухом. Вісник КрНУ імені Михайла Остроградського. 2012. №5. С. 67–71.
  3. Тітов В. А., Борис Р. С., Тривайло М. С. Напрямки розвитку способів виготовлення біметалевих трубчастих елементів з різнорідних матеріалів витягуванням. Вісник Національного технічного університету України Київський політехнічний інститут, серія Машинобудування. 2009. №56. С. 154–159.
  4. Miyazaki S., Kumai S., Sato A. Plastic deformation of Al–Cu–Fe quasicrystals embedded in Al2Cu at low temperatures. Mater Sci Eng. 2005. A 300–5. P. 400–401.
  5. Пузир Р. Г. Пластична деформація матеріалів, що мають різні механічні властивості. Сучасні енергетичні установки на транспорті і технології та обладнання для їх обслуговування: зб матер. Всеукр. наук.-практ. конф. Херсон: Херсонська державна морська академія, 2012. С.137–139.
  6. Гайкова Т. В. Кінцева-елементна модель деформування біметалічної заготівлі при отриманні витяжкою коробчастих деталей. Вісник національного технічного університету ХПІ. 2016. № 30 (1202). С. 21–25.
  7. Козлов Л. Г., Сивак І. О., Шевчук Є. І., Ковальчук В. А. Ротаційна витяжка вісесиметричних деталей з використанням мехатронного приводу. Вісник Вінницького політехнічного інституту. 2017. № 1. С. 93-98.
  8. Tenckhoff E. Review of the mechanism of deformation, texture and mechanical anisotropy in materials during drawing with thinning of thick-walled axisymmetric workpieces. Journal of ASTM International. 2005. Vol. 2. P. 1.
  9. Аніщенко А. С. Прогресивні технологічні рішення в обробці металів тиском: навч. посіб. Маріуполь: ДВНЗ ПДТУ, 2013. 180 с.
  10. Холявік О. В. Меленчук Ю. П., Вишневський П. С., Орлюк М. В. Порівняння параметрів НДС при витягуванні квадратних у плані коробчастих виробів із заготовок, розрахованих інженерним методом та методом потенціалу. Теоретичні та практичні проблеми в обробці матеріалів тиском і якості фахової освіти: зб. матеріалів V Міжнар. наук.-техн. конф. Київ: НТУУ КПІ, 2014. С. 132.
Copyright (c) 2023 Tetiana Haikova, Dmytro Kovalchuk, Roman Haikov