EVIDENCE OF ULTRAHIGH-PRESSURE EVOLUTION OF GARNET PERIDOTITES IN THE POLAR URALS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In garnet peridotites of the Marunkeu eclogite-gneiss complex (Polar Urals), segregations of carbonates in association with chlorapatite were first established. They contain relics of dolomite, which is “replaced” by calcite with symplectite (graphic) intergrowths of brucite and hydrocarbonate. The formation of peridotites with unusual carbonate structures is the result of the evolution of this complex at different depths. During deep subduction and progressive with the formation of garnet peridotites, segregated dolomite experienced a solid-phase breakdown into aragonite and magnesite at the pressure peak (≥5 GPa). During exhumation and retrograde metamorphism, garnet peridotites, together with segregations, underwent low-temperature transformations; aragonite was replaced by calcite, and magnesite by brucite and hydrocarbonate. The presence of carbonates with deep-seated structures confirms that the garnet peridotites and eclogites of the Polar Urals belong to ultrahigh-pressure complexes.

About the authors

V. R. Shmelev

Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: shmelev@igg.uran.ru
Russian, Yekaterinburg

F-C. Meng

Institute of Geology Chinese Academy of Geological Sciences

Email: shmelev@igg.uran.ru
China, 100037, Beijing

References

  1. Лю И., Перчук А.Л., Арискин А.А. Высокобарный метаморфизм в перидотитовом кумулате комплекса Марун-Кеу, Полярный Урал // Петрология. 2019. Т. 27. № 2. С. 138–160.
  2. Селятицкий А. Ю., Куликова К. В. Первые данные о проявлении UHP-метаморфизма на Полярном Урале // ДАН. 2017. Т. 476. № 6. С. 681–684.
  3. Удовкина Н.Г. Эклогиты Полярного Урала. М.: Наука, 1971. 192 с.
  4. Уляшева Н.С., Пыстин А.М., Панфилов А.В., Потапов И.T. Две серии первично-магматических пород в Марункеусском эклогит-гнейсовом комплексе (Полярный Урал) // Вестник Института геологии Коми научного центра УрО РАН. 2015. № 11 (251). С. 3–12.
  5. Шацкий В.С., Симонов В.А., Ягоутц Э. и др. Новые данные о возрасте эклогитов Полярного Урала // ДАН. 2000. Т. 371. № 4. С. 519–523.
  6. Buob A., Luth R.W., Schmidt M.W., Ulmer P. Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature // American Mineralogist. 2006. V. 91. P. 435–440.
  7. Day H.W. A revised diamond-graphite transition curve // American Mineralogist. 2012. V. 97. P. 52–62.
  8. Forster B., Braga R., Aulbach S., Lo Pò D., Bargossi G.M., Mair V. A petrographic study of carbonate phases in the Ulten Zone ultramafic rocks: insights into carbonation in the mantle wedge and exhumation-related decarbonation // Ofioliti. 2017. V. 42 (2). P. 105–127.
  9. Glodny J., Pease V.L., Montero P., Austrheim H., Rusin A.I. Protolith ages of eclogites, Marun-Keu complex, Polar Urals, Russia: implications for the pre- and early Uralian evolution of the northeastern European continenral margin // Geological Society of London. Memoirs. 2004. V. 30. P. 87–105.
  10. Johannes W., Puhan D. The calcite–aragonite transition, reinvestigated // Contributions to Mineralogy and Petrology. 1971. V. 31. P. 28–38.
  11. Liou J.G., Zhang R.Y., Ernst W.G. Very high-pressure orogenic garnet peridotites // Proceedings of the National Academy of Sciences. 2007. V. 104 (22). P. 9116–9121.
  12. Luth R.W. Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa // Contributions to Mineralogy and Petrology. 2001. V. 141. P. 222–232.
  13. Meng F., Yazhou F., Shmelev V.R., Kulikova K.V. Constraints of eclogites from the Marun-Keu metamorphic complex on the tectonic history of the Polar Urals (Russia) // Journal of Asian Earth Sciences. 2020. V. 187. 104087. P. 1–12.
  14. Molina J.F., Austrheim H., Glodny J., Rusin A. The eclogite of the Marun-Keu complex, Polar Urals (Russia): fluid control on reaction kinetics and metasomatism during high P metamorphism // Lithos. 2002. V. 61. P. 55–78.
  15. Su B., Chen Y., Guo S., Liu J.B. Dolomite dissociation indicates ultra-deep (>150 km) subduction of a garnet-bearing dunite block (the Sulu UHP terrane) // American Mineralogist. 2017. V. 102 (11). P. 2295–2306.
  16. O’Reilly S.Y., Griffin W.L. Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle // Lithos. 2000. V. 53. P. 217–232.
  17. Tao R., Zhang L., Zhang L. Redox evolution of western Tianshan subduction zone and its effect on deep carbon cycle // Geoscience Frontiers. 2020. V. 11. P. 915–924.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (413KB)
3.

Download (4MB)
4.

Download (105KB)
5.

Download (170KB)

Copyright (c) 2023 В.Р. Шмелев, Ф-С. Мэн

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies