APPROBATION OF A NEW MODEL OF SECONDARY DAMAGE AFTER TRAUMATIC BRAIN INJURY BASED ON REPROGRAMMED RAT EMBRYO FIBROBLASTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a new model of secondary injuries after traumatic brain injury. The model is based on the cultivation of rat embryonic fibroblasts reprogrammed to a neuronal phenotype in the presence of cerebrospinal fluid from injured rats. The presented model was used to test the therapeutic effect of inducers of the synthesis of chaperones from the classes of pyrrolyl- and indolylazines, which have neuroprotective properties.

About the authors

E. B. Rykunova

Institute of Cytology of the Russian Academy of Sciences

Email: lazarev@incras.ru
Russian Federation, St. Petersburg

M. A. Mikeladze

Institute of Cytology of the Russian Academy of Sciences

Email: lazarev@incras.ru
Russian Federation, St. Petersburg

I. A. Utepova

Ural Federal University; Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: lazarev@incras.ru
Russian Federation, Yekaterinburg; Russian Federation, Yekaterinburg

O. N. Chupakhin

Ural Federal University; Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences

Email: lazarev@incras.ru
Russian Federation, Yekaterinburg; Russian Federation, Yekaterinburg

I. V. Guzhova

Institute of Cytology of the Russian Academy of Sciences

Email: lazarev@incras.ru
Russian Federation, St. Petersburg

V. F. Lazarev

Institute of Cytology of the Russian Academy of Sciences

Author for correspondence.
Email: lazarev@incras.ru
Russian Federation, St. Petersburg

References

  1. Beez T., Steiger H.J., Etminan N., Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis – a systematic review and meta-analysis // BMC Neurol. 2017. V. 17. P. 209. https://doi.org/10.1186/s12883-017-0994-z
  2. Smrcka M., Vidlák M., Máca K., Smrcka V., Gál R., The influence of mild hypothermia on ICP, CPP and outcome in patients with primary and secondary brain injury // Acta Neurochir. Suppl. 2005. V. 95. P. 273–275.
  3. Quillinan N., Herson P.S., Traystman R.J., Neuropathophysiology of Brain Injury, // Anesthesiol. Clin. 2016. V. 34. P. 453–464.
  4. Curvello V., Hekierski H., Pastor P., Vavilala M.S., Armstead W.M., Dopamine protects cerebral autoregulation and prevents hippocampal necrosis after traumatic brain injury via block of ERK MAPK in juvenile pigs // Brain Res. 2017. V. 1670. P. 118–124.
  5. Rasmussen M.K., Mestre H., Nedergaard M., The glymphatic pathway in neurological disorders, // Lancet Neurol. (2018).
  6. Yang X.J., Ling S., Zhou M.L., Deng H.J., Qi M., Liu X.L., Zhen C., Chen Y.X., Fan X.R., Wu Z.Y., Ma F.C., Rong J., Di G.F., Jiang X.C., Inhibition of TRPA1 Attenuates Oxidative Stress-induced Damage After Traumatic Brain Injury via the ERK/AKT Signaling Pathway // Neuroscience. 2022. V. 494. P. 51–68.
  7. Liu N., Li Y., Jiang Y., Shi S., Niamnud A., Vodovoz S.J., Katakam P.V.G., Vidoudez C., Dumont A.S., Wang X., Establishment and Application of a Novel In Vitro Model of Microglial Activation in Traumatic Brain Injury // J. Neurosci. 2023. V. 43. P. 319–332.
  8. Dutysheva E.A., Mikhaylova E.R., Trestsova M.A., Andreev A.I., Apushkin D.Y., Utepova I.A., Serebrennikova P.O., Akhremenko E.A., Aksenov N.D., Bon’ E.I., Zimatkin S.M., Chupakhin O.N., Margulis B.A., Guzhova I.V., Lazarev V.F., Combination of a Chaperone Synthesis Inducer and an Inhibitor of GAPDH Aggregation for Rehabilitation after Traumatic Brain Injury: A Pilot Study // Pharm. 2023. V. 15. Page 7. 15 (2022) 7.
  9. Bessières B., Jia M., Travaglia A., Alberini C.M., Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala // Learn. Mem. 2019. V. 26. P. 436–448.
  10. Gingras M., Champigny M.F., Berthod F., Differentiation of human adult skin-derived neuronal precursors into mature neurons // J. Cell. Physiol. 2007. V. 210. P. 498–506.
  11. Mikeladze M.A., Dutysheva E.A., Kartsev V.G., Margu-lis B.A., Guzhova I.V., Lazarev V.F., Disruption of the complex between GAPDH and Hsp70 sensitizes C6 glioblastoma cells to hypoxic stress // Int. J. Mol. Sci. 2021. V. 22.
  12. Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays // J. Immunol. Methods. 1983. V. 65. P. 55–63.
  13. Utepova I.A., Trestsova M.A., Chupakhin O.N., Charushin V.N., Rempel A.A., Aerobic oxidative C-H/C-H coupling of azaaromatics with indoles and pyrroles in the presence of TiO2 as a photocatalyst // Green Chem. 2015. V. 17. P. 4401–4410.
  14. Lazarev V.F., Dutysheva E.A., Mikhaylova E.R., Trestsova M.A., Utepova I.A., Chupakhin O.N., Margulis B.A., Guzhova I.V., Indolylazine Derivative Induces Chaperone Expression in Aged Neural Cells and Prevents the Progression of Alzheimer’s Disease // Molecules. 2022. V. 27. P. 8950.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (82KB)
3.

Download (70KB)
4.

Download (425KB)
5.

Download (71KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies