Structural Changes during Polymerization of Acrylamide in Semidilute Solutions of Wormlike Surfactant Micelles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure and rheological properties of aqueous solutions of the anionic surfactant potassium oleate and the water-soluble monomer acrylamide before and after radical polymerization have been studied. In the absence of monomer and in the presence of a low-molecular-weight salt, potassium oleate forms a network of long entangled cylindrical (wormlike) micelles. The addition of the monomer does not lead to a change in their cylindrical shape and radius, but it promotes the transformation of branched micelles into linear ones. The structure of surfactant aggregates changes significantly after polymerization: according to neutron scattering data, it becomes bicontinuous and its local geometry becomes lamellar. The coexistence of such a structure with polyacrylamide macromolecules in a semidilute solution leads to a significant synergistic increase in viscosity and elastic modulus.

About the authors

A. S. Ospennikov

Faculty of Physics, Moscow State University

Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia

A. V. Shibaev

Faculty of Physics, Moscow State University

Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia

A. I. Kuklin


Joint Institute for Nuclear Research; Moscow Institute of Physics and Technology

Email: shibaev@polly.phys.msu.ru
141980, Dubna, Moscow oblast, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

O. E. Philippova

Faculty of Physics, Moscow State University

Author for correspondence.
Email: shibaev@polly.phys.msu.ru
119991, Moscow, Russia

References

  1. Семчиков Ю.Д. Высокомолекулярные соединения. М.: Академия, 2008.
  2. Gur’eva L.L., Tkachuk A.I., Estrin Ya.i., Komarov B.A., Dzhavadyan E.A., Estrina G.A., Bogdanova L.M., Surkov N.F., Rozenberg B.A. // Polymer Science A. 2008. V. 50. № 3. P. 283.
  3. Kulichikhin S.G., Malkin A.Ya., Polushkina O.M., Kulichikhin V.G. // Polym. Eng. Sci. 1997. V. 37. № 8. P. 1331.
  4. Fischer E.J., Storti G., Cuccato D. // Processes. 2017. V. 5. № 2. P. 23.
  5. Jaeger W., Hahn M., Lieske A., Zimmermann A., Brand F. // Macromol. Symp. 1996. V. 111. № 1. P. 95.
  6. Evans F.D., Wennerström H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. New York: Wiley-VCH, 1999.
  7. Hill A., Candau F., Selb J. // Macromolecules. 1993. V. 26. № 17. P. 4521.
  8. Candau F., Biggs S., Hill A., Selb J. // Prog. Org. Coat. 1994. V. 24. № 1–4. P. 11.
  9. Friend J.P., Alexander A.E. // J. Polym. Sci., Polym. Chem. 1968. V. 6. P. 1833.
  10. Niranjan P.S., Tiwari A.K., Upadhyay S.K. // J. Appl. Polym. Sci. 2011. V. 122. P. 981.
  11. Barthet C., Wilson J., Cadix A., Destarac M., Chassenieux C., Harrisson S. // J. Polym. Sci., Polym. Chem. 2018. V. 56. № 7. P. 760.
  12. Sabbadin J., François J. // Colloid Polym. Sci. 1980. V. 258. P. 1250.
  13. Dreiss C.A. // Soft Matter. 2007. V. 3. № 8. P. 956.
  14. Shibaev A.V., Osiptsov A.A., Philippova O.E. // Gels. 2021. V. 7. № 4. P. 258.
  15. Israelachvili J.N., Mitchell D.J., Ninham B.W. // J. Chem. Soc., Faraday Trans. 2. 1976. V. 72. P. 1525.
  16. Bergström L.M. // AIP Adv. 2018. V. 8. № 5. P. 055136.
  17. Can V., Kochovski Z., Reiter V., Severin N., Siebenburger M., Kent B., Just J., Rabe J.P., Ballauf M., Okay O. // Macromolecules. 2016. V. 49. № 6. P. 2281.
  18. Tuncaboylu D.C., Sari M., Oppermann W., Okay O. // Macromolecules. 2011. V. 44. № 12. P. 4997.
  19. Shibaev A.V., Ospennikov A.S., Kuznetsova E.K., Kuklin A.I., Aliev T.M., Novikov V.V., Philippova O.E. // Nanomaterials. 2022. V. 12. P. 4445.
  20. Shibaev A.V., Smirnova M.E., Kessel D.E., Bedin S.A., Razumovskaya I.V., Philippova O.E. // Nanomaterials. 2021. V. 11. P. 1271.
  21. Roland S., Miquelard-Garnier G., Shibaev A.V., Aleshina A.L., Chennevière A., Matsarskaia O., Sollogoub C., Philippova O.E., Iliopoulos I. // Polymers. 2021. V. 13. P. 4255.
  22. Shibaev A.V., Aleshina A.L., Arkharova N.A., Orekhov A.S., Kuklin A.I., Philippova O.E. // Nanomaterials. 2020. V. 10. № 12. P. 2353.
  23. Molchanov V.S., Philippova O.E. // Colloid J. 2009. V. 71. № 2. P. 239.
  24. Calabrese M.A., Wagner N.J. // ACS Macro Lett. 2018. V. 7. № 6. P. 614.
  25. Lequeux F. // Europhys. Lett. 1992. V. 19. P. 675.
  26. Ospennikov A.S., Gavrilov A.A., Artykulnyi O.P., Kuklin A.I., Novikov V.V., Shibaev A.V., Philippova O.E. // J. Colloid Interface Sci. 2021. V. 602. P. 590.
  27. Oelschlaeger C., Schopferer M., Scheffold F., Willenbacher N. // Langmuir. 2009. V. 25. № 2. P. 716.
  28. Grillo I. // Soft Matter Characterization / Ed. by R. Borsali, R. Pecora. Springer, 2008. P. 723.
  29. Li X., Lin Z., Cai J., Scriven L.E., Davis H.T. // J. Phys. Chem. 1995. V. 99. P. 10865.
  30. Shibaev A.V., Kuklin A.I., Torocheshnikov V.N., Ore-khov A.S., Roland S., Miquelard-Garnier G., Matsarskaia O., Iliopoulos I., Philippova O.E. // J. Colloid Interface Sci. 2022. V. 611. P. 46.
  31. Gamez-Corrales R., Berret J.-F., Walker L.M., Oberdisse J. // Langmuir. 1999. V. 15. P. 6755.
  32. Salentinig S., Sagalowicz L., Glatter O. // Langmuir. 2010. V. 26. № 14. P. 11670.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (105KB)
3.

Download (128KB)
4.

Download (63KB)
5.

Download (143KB)
6.

Download (191KB)

Copyright (c) 2023 А.С. Оспенников, А.В. Шибаев, А.И. Куклин, О.Е. Филиппова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies