Model of Structural Ordering of Vacancies and Formation of a Family of Ternary Compounds in I–III–VI Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A characteristic feature of AIBIIICVI ternary chalcogenide compounds, which has a significant effect on the possibility of controlling the functional properties of materials based on them, is a strong tendency to stoichiometry deviation. The existence of ordered vacancy compounds in nanocrystals of the AIBIIICVI system was substantiated using the triangulation method (N.A. Goryunova’s method for predicting the composition of diamond-like semiconductors). Taking into account the assumption of the formation of electrically neutral defect complexes consisting of a vacancy in the position of the group I atom \(2[0]_{{\text{I}}}^{{ - 1}}\) and a doubly ionized antistructural defect \({\text{In}}_{{\text{I}}}^{{ + 2}}\) vacancies are presented as a pseudo-element of the “zero group”, while the system is considered from the point of view of the concentration tetrahedron so that the triangulation operations are transformed into tetrahedration operations. In the presence of such a “virtual” element, instead of a single stoichiometric composition in the AIBIIICVI system, a set of ternary compounds with an ordered content of vacancies known from the literature is determined, corresponding to semiconductors with four bonds per individual atom.

About the authors

D. S. Mazing

St. Petersburg Electrotechnical University

Author for correspondence.
Email: dmazing@yandex.ru
Russia, 197022, St. Petersburg

О. А. Aleksandrova

St. Petersburg Electrotechnical University

Author for correspondence.
Email: oaaleksandrova@gmail.com
Russia, 197022, St. Petersburg

V. А. Moshnikov

St. Petersburg Electrotechnical University

Author for correspondence.
Email: vamoshnikov@mail.ru
Russia, 197022, St. Petersburg

References

  1. Kagan C.R., Lifshitz E., Sargent E.H., Talapin D.V. // Science. 2016. V. 353. № 6302. P. 885. https://www.doi.org/10.1126/science.aac5523
  2. Choi M.K., Yang J., Hyeon T., Kim D.H. // npj Flexible Electronics. 2018. V. 2. P. 10. https://www.doi.org/10.1038/s41528-018-0023-3
  3. García de Arquer F.P., Armin A., Meredith P., Sargent E.H. // Nat. Rev. Mater. 2017. V. 2. P. 16100. https://www.doi.org/10.1038/natrevmats.2016.100
  4. Pelaz B., Alexiou C., Alvarez-Puebla R.A., Alves F., Andrews A.M., Ashraf S., Balogh L.P., Ballerini L., Bestetti A., Brendel C. et al. // ACS Nano. 2017. V. 11. P. 2313. https://www.doi.org/10.1021/acsnano.6b06040
  5. Sharan A., Sabino F.P., Janotti A., Gaillard N., Ogitsu T., Varley J.B. // J. Appl. Phys. 2020. V. 127. № 6. P. 065303. https://www.doi.org/10.1063/1.5140736
  6. Du J., Singh R., Fedin I., Fuhr A.S., Klimov V.I. // Nature Energy. 2020. V. 5. P. 409. https://www.doi.org/10.1038/s41560-020-0617-6
  7. Regmi G., Ashok A., Chawla P., Semalti P., Velumani S., Sharma S.N., Castaneda H. // J. Mater. Sci.: Mater. Electronics. 2020. V. 31. № 10. P. 7286. https://www.doi.org/10.1007/s10854-020-03338-2
  8. Aldakov D., Lefrançois A., Reiss P. // J. Mater. Chem. C. 2013. V. 1. № 24. P. 3756. https://www.doi.org/10.1039/C3TC30273C
  9. Mazing D.S., Karmanov A.A., Matyushkin L.B., Aleksandrova O.A., Pronin I.A., Moshnikov V.A. // Glass Phys. Chem. 2016. V. 42. P. 497. https://www.doi.org/10.1134/S1087659616050114
  10. Mazing D.S., Korepanov O.A., Aleksandrova O.A., Moshnikov V.A. // Opt. Spectrosc. 2018. V. 125. P. 773. https://www.doi.org/10.1134/S0030400X1811019X
  11. Korepanov O.A., Mazing D.S., Aleksandrova O.A., Moshnikov V.A., Komolov A.S., Lazneva E.F., Kirilenko D.A. // Phys. Solid State. 2019. V. 61. P. 2325. https://www.doi.org/10.1134/S1063783419120217
  12. Ghosh S., Mandal S., Mukherjee S., De C.K., Samanta T., Mandal M., Roy D., Mandal P.K. // J. Phys. Chem. Lett. 2021. V. 12. № 5. P. 1426. https://www.doi.org/10.1021/acs.jpclett.0c03519
  13. Yarema O., Yarema M., Wood V. // Chem. Mater. 2018. V. 30. № 5. P. 1446. https://www.doi.org/10.1021/acs.chemmater.7b04710
  14. Berends A.C., Mangnus M.J., Xia C., Rabouw F.T., de Mello Donega C. // J. Phys. Chem. Lett. 2019. V. 10. № 7. P. 16006. https://www.doi.org/10.1021/acs.jpclett.8b03653
  15. Leach A.D., Macdonald J.E. // J. Phys. Chem. Lett. 2016. V. 7. № 3. P. 572. https://www.doi.org/10.1021/acs.jpclett.5b02211
  16. Горюнова Н.А. Сложные алмазоподобные полупроводники. М.: Сов. радио, 1968.
  17. Coughlan C., Ibáñez M., Dobrozhan O., Singh A., Cabot A., Ryan K.M. // Chem. Rev. 2017. V. 117. № 9. P. 5865. https://www.doi.org/10.1021/acs.chemrev.6b00376
  18. Jeong S., Yoon H.C., Han N.S., Oh J.H., Park S.M., Min B., Do Y.R., Song J.K. // J. Phys. Chem. C. 2017. V. 121. № 5. P. 3149. https://www.doi.org/10.1021/acs.jpcc.7b00043
  19. Merino J.M., Mahanty S., Leon M., Diaz R., Rueda F., De Vidales J.M. // Thin Solid Films. 2000. V. 361. P. 70. https://www.doi.org/10.1016/S0040-6090(99)00771-3
  20. Yarema O., Yarema M., Bozyigit D., Lin W.M., Wood V. // ACS Nano. 2015. V. 9. № 11. P. 11134. https://www.doi.org/10.1021/acsnano.5b04636
  21. Zhang S.B., Wei S.H., Zunger A. // Phys. Rev. Lett. 1997. V. 78. P. 4059. https://www.doi.org/10.1103/PhysRevLett.78.4059
  22. Zhang S.B., Wei Su-Huai, Zunger A., Katayama-Yoshida H. // Phys. Rev. B. 1998. V. 57. P. 9642. https://www.doi.org/10.1103/PhysRevB.57.9642
  23. Matyushkin L.B., Moshnikov V.A. // Semiconductors. 2017. V. 51. P. 1337. https://www.doi.org/10.1134/S106378261710013X
  24. Aleshin A.N., Shcherbakov I.P., Kirilenko D.A., Matyushkin L.B., Moshnikov V.A. // Phys. Solid State. 2019. V. 61. P. 256. https://www.doi.org/10.1134/S1063783419020021
  25. Omata T., Nose K., Otsuka-Yao-Matsuo S. // J. Appl. Phys. 2009. V. 105. № 7. P. 073106. https://www.doi.org/10.1063/1.3103768

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (330KB)
3.

Download (157KB)

Copyright (c) 2023 Д.С. Мазинг, О.А. Александрова, В.А. Мошников

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies