Kinetics of Hydrogen Evolution during Amminborane Hydrolysis with Cobalt-Based Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of hydrogen evolution during the hydrolysis reaction of aqueous solutions of amminborane with cobalt-based catalysts deposited on various substrates – Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, Co/zeolite, as well as Co(OH)2 powder, was studied. In each case, the reaction order, the rate constants and apparent activation energy of the reaction, and the rate of hydrogen evolution during hydrolysis in the temperature range 35–80°C were determined. In all cases, an amminborane solution with a concentration of 0.078 M was used. The amount of the active part of the catalysts was determined by the chemical method and was 7.5–10% of the total weight of the catalyst. For low-temperature Co–B and Co(OH)2 catalysts, the kinetic dependences corresponded to the zero or close to zero reaction order. When using the catalysts Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, Co/zeolite, the first order of the reaction was observed. The maximum rate of hydrogen evolution at 80°C was 3125 mL H2 · (g-cat–1) · min–1 for Co/ZnO catalyst (turnover frequency TOF = 8.2 min–1) and 3750 mL H2 · (g-cat–1) · min–1 for Co–B catalyst (TOF = 11.7 min–1), respectively. The values of the apparent activation energy of the reaction of catalytic hydrolysis of amminborane were calculated for the catalysts: Co3O4/ZnO – 26.0, LT Co–B – 44.8, Co(OH)2 black – 43.4, Co(OH)2 blue – 47.4 kJ/mol, respectively.

About the authors

N. Ya. Dyankova

Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)

Email: grinko@iptm.ru
Russia, 142432, Moscow Region, Chernogolovka

N. V. Lapin

Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)

Email: grinko@iptm.ru
Russia, 142432, Moscow Region, Chernogolovka

V. V. Grinko

Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)

Author for correspondence.
Email: grinko@iptm.ru
Russia, 142432, Moscow Region, Chernogolovka

A. F. Vyatkin

Institute for Problems of Technology of Microelectronics and High-Purity Materials RAS (IPTM RAS)

Email: grinko@iptm.ru
Russia, 142432, Moscow Region, Chernogolovka

References

  1. Akbayrak S., Ozkar S. // Int. J. Hydrogen En. 2018. V. 43. № 40. P. 18592.https://doi.org/10.1016/j.ijhydene.2018.02.190
  2. Demirci U.B. // Int. J. Hydrogen En. 2017. V. 42. № 15. P. 9978.https://doi.org/10.1016/j.ijhydene.2017.01.154
  3. Figen A.K., Piskin M.B., Coskuner B., Imamoglu V. // Int. J. Hydrogen En. 2013. V. 38. № 36. P. 16 215.https://doi.org/10.1016/j.ijhydene.2013.10.033
  4. Sreedhar I., Kamani K.M., Kamani B.M., Reddy B.M., Venugopal A. // Renewable and Sustainable En. Rev. 2018. V. 91. P. 838.https://doi.org/10.1016/j.rser.2018.04.028
  5. Simagina V.I., Vernikovskaya N.V., Komova O.V., Kayl N.L., Netskina O.V., Odegova G.V. // Chem. Eng. J. 2017. V. 329. P. 156. https://doi.org/10.1016/j.cej.2017.05.005
  6. Liu M., Zhou L., Luo X., Wan C., Xu L. // Catalysts. 2020. V. 10. P. 788.https://doi.org/10.3390/catal10070788
  7. Wu H., Cheng Y., Fan Y., Lu X., Li L., Liu B., Li B., Lu S. // Int. J. Hydrogen En. 2020. V. 45. № 55. P. 30325. https://doi.org/10.1016/j.ijhydene.2020.08.131
  8. Alpaydin C.Y., Gulbay S.K., Colpan C.O. // Int. J. Hydrogen En. 2020. V. 45. № 5. P. 3414.https://doi.org/10.1016/j.ijhydene.2019.02.181
  9. Demirci U.B., Miele P. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 6872. https://doi.org/10.1039/c4cp00250d
  10. Patel N., Miotello A. // Int. J. Hydrogen En. 2015. V. 40. № 3. P. 1429. https://doi.org/10.1016/j.ijhydene.2014.11.052
  11. Lu D., Liao J., Zhong S., Leng Y., Ji S., Wang H., Wang R., Li H. // Int. J. Hydrogen En. 2018. V. 43. № 11. P. 5541. https://doi.org/10.1016/j.ijhydene.2018.01.129
  12. Gorlova A.M., Kayl N.L., Komova O.V., Netskina O.V., Ozerova A.M., Odegova G.V., Bulavchenko O.A., Ishchenko A.V., Simagina V.I. // Renewable En. 2018. V. 121. P. 722. https://doi.org/10.1016/j.renene.2018.01.089
  13. Kinsiz B.N., Filiz B.C., Depren S.K., Figen A.K. // Appl. Mater. Today. 2021. V. 22. P. 100952. https://doi.org/10.1016/j.apmt.2021.100952
  14. Лапин Н.В., Дьянкова Н.Я. // Неорган. материалы. 2013. Т. 49. № 10. С. 1050. https://doi.org/10.7868/S0002337X13100060
  15. Onat E., Sahin O., Izgi M.S., Horoz S. // J. Mater. Sci: Mater. Electron. 2021. V. 32. P. 27251. https://doi.org/10.1007/s10854-021-07094-9
  16. Xu S.H., Wang J.F., Valerio A., Zhang W.Y., Sun J.L., He D.N. // Inor. Chem. Frontiers. 2021. V. 8. № 1. P. 48. https://doi.org/10.1039/d0qi00659a
  17. Zhang H., Gu X.J., Song J. // Int. J. Hydrogen En. 2020. V. 45. № 41. P. 21273. https://doi.org/10.1016/j.ijhydene.2020.05.178
  18. Yang G., Guan S.Y., Mehdi S., Fan Y.P., Liu B.Z., Li B.J. // Green En. Environ. 2021. V. 6. № 2. P. 236.https://doi.org/10.1016/j.gee.2020.03.012
  19. Herron R., Marchant C., Sullivan J.A. // Catalysis Commun. 2018. V. 107. P. 14. https://doi.org/10.1016/j.catcom.2018.01.008
  20. Wang W.J., Liang M.W., Jiang Y., Liao C.Y., Long Q., Lai X.F., Liao L. // Mater. Lett. 2021. V. 293. P. 129702.https://doi.org/10.1016/j.matlet.2021.129702
  21. Fang M.H., Wu S.Y., Chang Y.H., Narwane M., Chen B.H., Liu W.L., Kurniawan D., Chiang W.H., Lin C.H., Chuang Y.C., Hsu I.J., Chen H.T., Lu T.T. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 40. P. 47465. https://doi.org/10.1021/acsami.1c11521
  22. Zhang J., Duan Y., Zhu Y., Wang Y., Yao H., Mi G. // Mater. Chem. Phys. 2017. V. 201. P. 297. https://doi.org/10.1016/j.matchemphys.2017.08.040
  23. Wang Y., Meng W., Wang D., Li G., Wu S., Cao Z., Zhang K., Wu C., Liu S. // Int. J. Hydrogen En. 2017. V. 42. № 52. P. 30718. https://doi.org/10.1016/j.ijhydene.2017.10.131
  24. Jiang R., Wang W.Z., Zheng X., Li Q.A., Xu Z.M., Peng J. // Int. J. Hydrogen En. 2021. V. 46. № 7. P. 5345. https://doi.org/10.1016/j.ijhydene.2020.11.086
  25. Wu H., Cheng Y.J., Wang B.Y., Wang Y., Wu M., Li W.D., Liu B.Z., Lu S.Y. // J. En. Chem. 2021. V. 57. P. 198. https://doi.org/10.1016/j.jechem.2020.08.051
  26. Wang C., Wang Z.L., Wang H.L., Chi Y., Wang M.G., Cheng D.W., Zhang J.J., Wu C., Zhao Z.K. // Int. J. Hydrogen En. 2021. V. 46. № 13. P. 9030. https://doi.org/10.1016/j.ijhydene.2021.01.026
  27. Chen J., Long B., Hu H.B., Zhong Z.Q., Lawa I., Zhang F., Wang L.W., Yuan Z.H. // Int. J. Hydrogen En. 2022. V. 47. № 5. P. 2976.https://doi.org/10.1016/j.ijhydene.2021.10.255
  28. Hu H.B., Long B., Jiang Y.F., Sun S.C., Lawan I., Zhou W.M., Zhang M.X., Wang L.W., Zhang F., Yuan Z.H. // Chem. Res. Chin. Univer. 2020. V. 36. № 6. P. 1209. https://doi.org/10.1007/s40242-020-0209-9
  29. Ozerova A.M., Bulavchenko O.A., Komova O.V., Netskina O.V., Zaikovskii V.I., Odegova G.V., Simagina V.I. // Kinetics Catalysis. 2012. V. 53. № 4. P. 511. https://doi.org/10.1134/S0023158412040088
  30. Netskina O.V., Ozerova A.M., Komova O.V., Kochubey D.I., Kanazhevskiy V.V., Ishchenko A.V., Simagina V.I. // Top Catal. 2016. V. 59. P. 1431.https://doi.org/10.1007/s11244-016-0664-1
  31. Simagina V.I., Ozerova A.M., Komova O.V., Netskina O.V. // Catalysts. 2021. V. 11. № 2. P. 268.https://doi.org/10.3390/catal11020268
  32. Карякин Ю.В., Ангелов И.И. // Чистые химические вещества. М.: Химия, 1974. С. 207.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (77KB)
3.

Download (70KB)
4.

Download (85KB)
5.

Download (70KB)
6.

Download (83KB)
7.

Download (91KB)
8.

Download (101KB)

Copyright (c) 2023 Н.Я. Дьянкова, Н.В. Лапин, В.В. Гринько, А.Ф. Вяткин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies