Neurogenic Regulation of Cerebral Blood Flow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The brain has a well-developed vascular network, which allows it to consume up to 15% of the cardiac output with a low mass relative to the whole-body weight. Normally, the metabolic demands of the brain depend considerably on the intensity of functioning of its different departments, which requires constant regulation of the local blood flow level. On the other hand, the state of systemic hemodynamics can have a significant impact on the organ blood flow. Complex and multilevel mechanisms of the regulation of organ cerebral blood flow are aimed at minimizing the possible adverse effects of systemic hemodynamics impairment. The importance of precise and prompt regulation of cerebral blood flow is reinforced by the absence of energy reserves or substrates for its autonomous production in the nervous tissue. The main mechanisms of cerebral blood flow regulation include: myogenic regulation, influence of local humoral influences and vasoactive substances (hormones, metabolites) of systemic blood flow, changes in blood gas composition (increase or decrease in blood oxygen or carbon dioxide tension). In addition, endothelium-dependent mechanisms of regulation are distinguished. Finally, one more level of cerebral arterial tone regulation is represented by the effect of neurotransmitters released from vasomotor fibers terminals of sympathetic and parasympathetic sections of autonomic nervous system, as well as from subcortical neurons and cortical interneurons terminals. In the present review, the principles of neurogenic regulation of cerebral blood flow are considered. The neurogenic regulation of vascular tone is the most complex regulatory circuit. The autonomic innervation of cerebral vessels has significant features that distinguish it from that in most other organs of the great circulatory circle. In addition to the autonomic innervation proper, the vessels of the brain receive sensory innervation, and the small intracerebral arterioles are also innervated -directly by subcortical neurons and cortical interneurons. In this connection, a deeper understanding of the molecular mechanisms of the neurogenic regulation of cerebral blood flow may serve as a basis for the development of new methods of treatment of severe brain diseases based on neuromodulation in the long term.

About the authors

D. D. Vaulina

Almazov National Medical Research Centre

Author for correspondence.
Email: uplavice@gmail.com
Russia, St. Petersburg

D. Yu. Butko

St. Petersburg State Pediatric Medical University of the Ministry of Health of the Russian Federation

Email: uplavice@gmail.com
Russia, Saint-Petersburg

А. А. Karpov

Almazov National Medical Research Centre

Email: uplavice@gmail.com
Russia, St. Petersburg

М. М. Galagudza

Almazov National Medical Research Centre; Institute for Analytical Instrumentation of the Russian Academy of Sciences

Email: uplavice@gmail.com
Russia, St. Petersburg; Russia, Saint-Petersburg

References

  1. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10): 1133–1145. https://doi.org/10.1097/00004647-200110000-00001
  2. Бабиянц АЯ, Хананашвили ЯА (2018) Мозговое кровообращение: физиологические аспекты и современные методы исследования. Журн фундамент мед биол 3: 46–54. [Babiyanc AYa, Hananashvili YA (2018) Cerebral circulation: physiological aspects and metody issledovaniya. J Fundament Med Biol 3: 46–54. (In Russ)].
  3. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101(4): 1487–1559. https://doi.org/10.1152/physrev.00022.2020
  4. Thomas SN, Schroeder T, Secher NH, Mitchell JH (1989) Cerebral blood flow during submaximal and maximal dynamic exercise in humans. J Appl Physiol (1985) 67(2): 744–748. https://doi.org/10.1152/jappl.1989.67.2.744
  5. Iadecola C (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 96(1): 17–42. https://doi.org/10.1016/j.neuron.2017.07.030
  6. Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG (2022) Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 600(1): 15–39. https://doi.org/10.1113/JP281058
  7. Bleys RL, Cowen T (2001) Innervation of cerebral blood vessels: morphology, plasticity, age-related, and Alzheimer’s disease-related neurodegeneration. Microsc Res Tech 53(2): 106–118. https://doi.org/10.1002/jemt.1075
  8. Brassard P, Tymko MM, Ainslie PN (2017) Sympathetic control of the brain circulation: Appreciating the complexities to better understand the controversy. Auton Neurosci 207: 37–47. https://doi.org/10.1016/j.autneu.2017.05.003
  9. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2(2): 161–192. PMID: 2201348
  10. Strandgaard S, Sigurdsson ST (2008) Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Counterpoint: Sympathetic nerve activity does not influence cerebral blood flow. J Appl Physiol (1985) 105(4): 1366–1367; discussion 1367–1368. https://doi.org/10.1152/japplphysiol.90597.2008a
  11. Cassaglia PA, Griffiths RI, Walker AM (2008) Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol 294(4): R1255–R1261. https://doi.org/10.1152/ajpregu.00332.2007
  12. Thomas GD (2011) Neural control of the circulation. Adv Physiol Educ 35(1): 28–32. https://doi.org/10.1152/advan.00114.2010
  13. Gordon GRJ, MacVicar BA, Mulligan SJ (2009) Glia control of blood flow. In: Encyclopedia of Neuroscience. LR Squire (ed). Oxford. Acad Press. 737–742.
  14. Gezalian MM, Mangiacotti L, Rajput P, Sparrow N, Schlick K, Lahiri S (2021) Cerebrovascular and neurological perspectives on adrenoceptor and calcium channel modulating pharmacotherapies. J Cereb Blood Flow Metab 41(4): 693–706. https://doi.org/10.1177/0271678X20972869
  15. Purkayastha S, Saxena A, Eubank WL, Hoxha B, Raven PB (2013) α1-Adrenergic receptor control of the cerebral vasculature in humans at rest and during exercise. Exp Physiol 98(2): 451–461. https://doi.org/10.1113/expphysiol.2012.066118
  16. Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41(1): 102–109. https://doi.org/10.1161/STROKEAHA.109.557132
  17. Hamner JW, Tan CO (2014) Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke. 45(6): 1771–1777. https://doi.org/10.1161/STROKEAHA.114.005293
  18. Saleem S, Teal PD, Howe CA, Tymko MM, Ainslie PN, Tzeng YC (2018) Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 315(3): R484–R495. https://doi.org/10.1152/ajpregu.00032.2018
  19. Kimmerly DS, Tutungi E, Wilson TD, Serrador JM, Gelb AW, Hughson RL, Shoemaker JK (2003) Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23(6): 314–319. https://doi.org/10.1046/j.1475-0961.2003.00507.x
  20. Ide K, Boushel R, Sørensen HM, Fernandes A, Cai Y, Pott F, Secher NH (2000) Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiol Scand 170(1): 33–38. https://doi.org/10.1046/j.1365-201x.2000.00757.x
  21. Ogoh S, Dalsgaard MK, Secher NH, Raven PB (2007) Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans. Acta Physiol (Oxf) 191(1): 3–14. https://doi.org/10.1111/j.1748-1716.2007.01708.x
  22. Hare GM, Worrall JM, Baker AJ, Liu E, Sikich N, Mazer CD (2006) Beta2 adrenergic antagonist inhibits cerebral cortical oxygen delivery after severe haemodilution in rats. Br J Anaesth 97(5): 617–623. https://doi.org/10.1093/bja/ael238
  23. Seifert T, Rasmussen P, Secher NH, Nielsen HB (2009) Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade. Acta Physiol (Oxf) 196(3): 295–302. https://doi.org/10.1111/j.1748-1716.2008.01946.x
  24. Owman C, Edvinsson L, Nielsen KC (1974) Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels 11(1-2): 2–31. https://doi.org/10.1159/000157996
  25. Roloff EV, Tomiak-Baquero AM, Kasparov S, Paton JF (2016) Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 594(22): 6463–6485. https://doi.org/10.1113/JP272450
  26. Goadsby PJ (2013) Autonomic nervous system control of the cerebral circulation. Handb Clin Neurol 117: 193–201. https://doi.org/10.1016/B978-0-444-53491-0.00016-X
  27. Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985) 100(3): 1059–1064. https://doi.org/10.1152/japplphysiol.00954.2005
  28. Edvinsson L, Ekman R (1984) Distribution and dilatory effect of vasoactive intestinal polypeptide (VIP) in human cerebral arteries. Peptides 5(2): 329–331. https://doi.org/10.1016/0196-9781(84)90229-8
  29. Suzuki N, Hardebo JE (1993) The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5(1): 33–46.
  30. Goadsby PJ, Lambert GA, Lance JW (1984) The peripheral pathway for extracranial vasodilatation in the cat. J Auton Nerv Syst 10(2): 145–155. https://doi.org/10.1016/0165-1838(84)90053-5
  31. D’Alecy LG, Rose CJ (1977) Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ Res 41(3): 324–331. https://doi.org/10.1161/01.res.41.3.324
  32. Scremin OU, Rovere AA, Raynald AC, Giardini A (1973) Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4(2): 233–239.
  33. Hamner JW, Tan CO, Tzeng YC, Taylor JA (2012) Cholinergic control of the cerebral vasculature in humans. J Physiol 590(24): 6343–6352. https://doi.org/10.1113/jphysiol.2012.245100
  34. Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P (2011) The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab 31(5): 1187–1195. https://doi.org/10.1038/jcbfm.2011.24
  35. Khurana D, Kaul S, Bornstein NM (2009) ImpACT-1 Study Group. Implant for augmentation of cerebral blood flow trial 1: a pilot study evaluating the safety and effectiveness of the Ischaemic Stroke System for treatment of acute ischaemic stroke. Int J Stroke 4(6): 480–485. https://doi.org/10.1111/j.1747-4949.2009.00385.x
  36. Baker TS, Robeny J, Cruz D, Bruhat A, Iloreta AM, Costa A, Oxley TJ (2021) Stimulating the Facial Nerve to Treat Ischemic Stroke: A Systematic Review. Front Neurol 12: 753182. https://doi.org/10.3389/fneur.2021.753182
  37. Ashina H, Schytz HW, Ashina M (2019) CGRP in Human Models of Migraine. Handb Exp Pharmacol 255: 109–120. https://doi.org/10.1007/164_2018_128
  38. Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA (2019) Migraine and the trigeminovascular system – 40 years and counting. The Lancet Neurol 18: 795–804. https://doi.org/10.1016/S1474-4422(19)30185-1
  39. Waeber C, Moskowitz MA (2005) Migraine as an inflammatory disorder. Neurology 64(10 Suppl 2): S9–S15. https://doi.org/10.1212/wnl.64.10_suppl_2.s9
  40. Sakas DE, Moskowitz MA, Wei EP, Kontos HA, Kano M, Ogilvy CS (1989) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci U S A 86(4): 1401–1405. https://doi.org/10.1073/pnas.86.4.1401
  41. Moskowitz MA, Wei EP, Saito K, Kontos HA (1988) Trigeminalectomy modifies pial arteriolar responses to hypertension or norepinephrine. Am J Physiol 255(1 Pt 2): H1–H6. https://doi.org/10.1152/ajpheart.1988.255.1.H1
  42. Faraci FM, Mayhan WG, Werber AH, Heistad DD (1987) Cerebral circulation: effects of sympathetic nerves and protective mechanisms during hypertension. Circ Res 61(5 Pt 2): 102–106.
  43. Cohen Z, Molinatti G, Hamel E (1997) Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 17(8): 894–904. https://doi.org/10.1097/00004647-199708000-00008
  44. Estrada C, Mengual E, González C (1993) Local NADPH-diaphorase neurons innervate pial arteries and lie close or project to intracerebral blood vessels: a possible role for nitric oxide in the regulation of cerebral blood flow. J Cereb Blood Flow Metab 13(6): 978–984. https://doi.org/10.1038/jcbfm.1993.122
  45. Allaman I, Pellerin L, Magistretti PJ (2000) Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia 30(4): 382–391.
  46. Kötter K, Klein J (1999) Adrenergic modulation of astroglial phospholipase D activity and cell proliferation. Brain Res 830(1): 138–145. https://doi.org/10.1016/s0006-8993(99)01416-x
  47. Elhusseiny A, Hamel E (2001) Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles. Br J Pharmacol 132(1): 55–62. https://doi.org/10.1038/sj.bjp.0703763
  48. Guild SJ, Saxena UA, McBryde FD, Malpas SC, Ramchandra R (2018) Intracranial pressure influences the level of sympathetic tone. Am J Physiol Regul Integr Comp Physiol 315(5): R1049–R1053. https://doi.org/10.1152/ajpregu.00183.2018
  49. Elhusseiny A, Hamel E (2000) Muscarinic–but not nicotinic–acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20(2): 298–305. https://doi.org/10.1097/00004647-200002000-00011
  50. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical G-ABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24(41): 8940–8949. https://doi.org/10.1523/JNEUROSCI.3065-04.2004
  51. Yang G, Huard JM, Beitz AJ, Ross ME, Iadecola C (2000) Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J Neurosci 20(18): 6968–6973. https://doi.org/10.1523/JNEUROSCI.20-18-06968.2000
  52. Perrenoud Q, Rossier J, Férézou I, Geoffroy H, Gallopin T, Vitalis T, Rancillac A (2012) Activation of cortical 5-HT(3) receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Front Neural Circuits 6: 50. https://doi.org/10.3389/fncir.2012.00050
  53. Davis RJ, Murdoch CE, Ali M, Purbrick S, Ravid R, Baxter GS, Tilford N, Sheldrick RL, Clark KL, Coleman RA (2004) EP4 prostanoid receptor-mediated vasodilatation of human middle cerebral arteries. Br J Pharmacol 141(4): 580–585. https://doi.org/10.1038/sj.bjp.0705645
  54. Yu M, Cambj-Sapunar L, Kehl F, Maier KG, Takeuchi K, Miyata N, Ishimoto T, Reddy LM, Falck JR, Gebremedhin D, Harder DR, Roman RJ (2004) Effects of a 20-HETE antagonist and agonists on cerebral vascular tone. Eur J Pharmacol 486(3): 297–306. https://doi.org/10.1016/j.ejphar.2004.01.009
  55. Mariotti L, Losi G, Lia A, Melone M, Chiavegato A, Gómez-Gonzalo M, Sessolo M, Bovetti S, Forli A, Zonta M, Requie LM, Marcon I, Pugliese A, Viollet C, Bettler B, Fellin T, Conti F, Carmignoto G (2018) Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat Commun 9(1): 82. https://doi.org/10.1038/s41467-017-02642-6
  56. Lind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ (2013) Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A 110(48): E4678–E4687. https://doi.org/10.1073/pnas.1310065110
  57. Zornow MH, Maze M, Dyck JB, Shafer SL (1993) Dexmedetomidine decreases cerebral blood flow velocity in humans. J Cereb Blood Flow Metab 13(2): 350–353. https://doi.org/10.1038/jcbfm.1993.45
  58. Lee HW, Caldwell JE, Dodson B, Talke P, Howley J (1997) The effect of clonidine on cerebral blood flow velocity, carbon dioxide cerebral vasoreactivity, and response to increased arterial pressure in human volunteers. Anesthesiology 87(3): 553–558. https://doi.org/10.1097/00000542-199709000-00015
  59. Maekawa T, Cho S, Fukusaki M, Shibata O, Sumikawa K (1999) Effects of clonidine on human middle cerebral artery flow velocity and cerebrovascular CO2 response during sevoflurane anesthesia. J Neurosurg Anesthesiol 11(3): 173–177. https://doi.org/10.1097/00008506-199907000-00003
  60. Peebles KC, Ball OG, MacRae BA, Horsman HM, Tzeng YC (2012) Sympathetic regulation of the human cerebrovascular response to carbon dioxide. J Appl Physiol (1985) 113(5): 700–706. https://doi.org/10.1152/japplphysiol.00614.2012
  61. Lewis NC, Ainslie PN, Atkinson G, Jones H, Grant EJ, Lucas SJ (2013) Initial orthostatic hypotension and cerebral blood flow regulation: effect of α1-adrenoreceptor activity. Am J Physiol Regul Integr Comp Physiol 304(2): R147–R154. https://doi.org/10.1152/ajpregu.00427.2012
  62. Lewis NC, Smith KJ, Bain AR, Wildfong KW, Numan T, Ainslie PN (2015) Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci (Lond) 129(2): 169–178. https://doi.org/10.1042/CS20140751
  63. Fernandes IA, Mattos JD, Campos MO, Machado AC, Rocha MP, Rocha NG, Vianna LC, Nobrega AC (2016) Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise. Am J Physiol Heart Circ Physiol 310(11): H1541–H1548. https://doi.org/10.1152/ajpheart.00125.2016
  64. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, Pasco LC, Patel PM (2008) Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 108(2): 225–232. https://doi.org/10.1097/01.anes.0000299576.00302.4c
  65. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S (2008) Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology 109(4): 642–650. https://doi.org/10.1097/ALN.0b013e3181862a33
  66. Ainslie PN, Lucas SJ, Fan JL, Thomas KN, Cotter JD, Tzeng YC, Burgess KR (2012) Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985) 113(7): 1058–1067. https://doi.org/10.1152/japplphysiol.00463.2012
  67. Jordan J, Shannon JR, Diedrich A, Black B, Costa F, Robertson D, Biaggioni I (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 36(3): 383–388. https://doi.org/10.1161/01.hyp.36.3.383
  68. Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14): 1814–1820. https://doi.org/10.1161/01.cir.0000031798.07790.fe
  69. Zhang R, Crandall CG, Levine BD (2004) Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade. Stroke 35(4): 843–847. https://doi.org/10.1161/01.STR.0000120309.84666.AE
  70. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K (1995) Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst 50(3): 339–346. https://doi.org/10.1016/0165-1838(94)00105-s
  71. Mitsis GD, Zhang R, Levine BD, Tzanalaridou E, Katritsis DG, Marmarelis VZ (2009) Autonomic neural control of cerebral hemodynamics. IEEE Eng Med Biol Mag 28(6): 54–62. https://doi.org/10.1109/MEMB.2009.934908

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (990KB)

Copyright (c) 2023 Д.Д. Ваулина, Д.Ю. Бутко, А.А. Карпов, М.М. Галагудза

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies