Comparative Analysis of the Fibrosis Factors Expression in the Heart Tissue of Sprague-Dawley and Wistar Rats during Development of Chronic Renal Failure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The severity of the development of uremic cardiomyopathy (UC) and fibrosis of cardiac tissue at chronic renal failure (CRF) was compared in the model experiments on male Sprague-Dawley and Wistar rats of the SPF category. To induce CRF in rats, subtotal nephrectomy (NE) was performed on the left, and after 2 weeks, total nephrectomy on the right. Sham-operated (Sham) animals served as controls. 4 weeks after the second surgery, blood pressure (BP) was measured in animals, and the expression of fibrotic factors (transcription factor Fli1, pro-collagen-I, collagen-I and collagen-IV) in the tissues of heart left ventricle was evaluated by real-time PCR and immunoblotting. After NE, Sprague-Dawley rats exhibited a significant increase in systolic blood pressure and left ventricular hypertrophy. In Wistar rats, the difference in BP between NE and Sham animals was smaller, and the ratio of left ventricular mass to body weight did not change. Experimental CRF in Sprague-Dawley rats was accompanied by a 1.5–2.5-fold suppression of the Fli1 gene expression and a decrease in the content of Fli1 protein in the cardiac tissue, while no significant differences were observed in Wistar rats. The levels of pro-collagen-I and collagen-I in the heart of rats of both lines did not change either at the levels of transcription or translation. Such difference in development of pathological processes indicates ineffectiveness of applied NE scheme for induction of UC and investigation of pro-fibrotic processes in Wistar rats.

About the authors

N. I. Agalakova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: irinaromanova@mail.ru
Russia, St.-Petersburg

E. V. Mikhailova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: irinaromanova@mail.ru
Russia, St.-Petersburg

А. А. Piankov

Peter the Great Saint-Petersburg Polytechnic University

Email: irinaromanova@mail.ru
Russia, St.-Petersburg

O. V. Nadei

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: irinaromanova@mail.ru
Russia, St.-Petersburg

I. А. Ershov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: irinaromanova@mail.ru
Russia, St.-Petersburg

M. V. Galagudza

Institute of Experimental Medicine, Almazov National Medical Research Center,
Ministry of the Health of the Russian Federation

Email: irinaromanova@mail.ru
Russia, St.-Petersburg

A. Y. Bagrov

Padakonn Pharma

Email: irinaromanova@mail.ru
Estonia, Narva

I. V. Romanova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: irinaromanova@mail.ru
Russia, St.-Petersburg

References

  1. Garikapati K, Goh D, Khanna S, Echampati K (2021) Uraemic Cardiomyopathy: A Review of Current Literature. Clin Med Insights Cardiol 15: 1179546821998347. https://doi.org/10.1177/1179546821998347
  2. Patel N, Yaqoob MM, Aksentijevic D (2022) Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol 18(8): 524–537. https://doi.org/10.1038/s41581-022-00576-x
  3. Law JP, Pickup L, Pavlovic D, Townend JN, Ferro CJ (2023) Hypertension and cardiomyopathy associated with chronic kidney disease: epidemiology, pathogenesis and treatment considerations. J Hum Hypertens 37(1): 1–19. https://doi.org/10.1038/s41371-022-00751-4
  4. Adam RJ, Williams AC, Kriegel AJ (2022) Comparison of the surgical resection and infarct 5/6 nephrectomy rat models of chronic kidney disease. Am J Physiol Renal Physiol 322(6): F639–F654. https://doi.org/10.1152/ajprenal.00398.2021
  5. Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NI, Lakatta EG, Fedorova OV, Bagrov AY Shapiro JI (2006) Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 47: 488–495. https://doi.org/10.1161/01.HYP.0000202594.82271.92
  6. Elkareh, J, Kennedy DJ, Yashaswi B, Vetteth S, Shidyak A, Kim EG, Smaili S, Periyasamy SM, Hariri IM, Fedorova L, Liu J, Wu L, Kahaleh MB, Xie Z, Malhotra D, Fedorova OV, Kashkin VA, Bagrov AY, Shapiro JI (2007) Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension 49(1): 215–224. https://doi.org/10.1161/01.HYP.0000252409.36927.05
  7. Haller ST, Kennedy DJ, Shidyak A, Budny GV, Malhotra D, Fedorova OV, Shapiro JI, Bagrov AY (2012) Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens 25(6): 690–696. https://doi.org/10.1038/ajh.2012.17
  8. Elkareh J, Periyasamy SM, Shidyak A, Vetteth S, Schroeder J, Raju V, Hariri IM, El-Okdi N, Gupta S, Fedorova L, Liu J, Fedorova OV, Kahaleh MB, Xie Z, Malhotra D, Watson DK, Bagrov AY, Shapiro JI (2009) Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy. Am J Physiol Renal Physiol 296(5): F1219–F1226. https://doi.org/10.1152/ajprenal.90710.2008
  9. Fleck C, Appenroth D, Jonas P, Koch M, Kundt G, Nizze H, Stein G (2006) Suitability of 5/6 nephrectomy (5/6NX) for the induction of interstitial renal fibrosis in rats – pinfluence of sex, strain, and surgical procedure. Exp Toxicol Pathol 57(3): 195–205. https://doi.org/10.1016/j.etp.2005.09.005
  10. Mikhailova EV, Romanova IV, Bagrov AY, Agalakova NI (2023) Fli1 and Tissue Fibrosis in Various Diseases. Int J Mol Sci 24(3): 1881. https://doi.org/10.3390/ijms24031881
  11. Agalakova NI, Grigorova Y, Ershov I, Reznik VA, Mikhailova EV, Nadei OV, Samuilovskaya L, Romanova LA, Adair CD, Romanova IV, Bagrov A (2022) Canrenone restores vasorelaxation impaired by marinobufagenin in human preeclampsia. Int J Mol Sci 23: 3336. https://doi.org/10.3390/ijms23063336
  12. Marques C, Meireles M, Norberto S, Leite J, Freitas J, Pestana D, Faria A, Conceição Calhau C (2016) High-fat diet-induced obesity Rat model: a comparison between Wistar and Sprague-Dawley Rat. Adipocyte 5(1): 11–21. https://doi.org/10.1080/21623945.2015.1061723
  13. Kühn ER, Bellon K, Huybrechts L, Heyns W (1983) Endocrine differences between the Wistar and Sprague-Dawley laboratory rat: influence of cold adaptation. Horm Metab Res 15(10): 491–498. https://doi.org/10.1055/s-2007-1018767
  14. Garg R, Heinzle E, Noor F (2018) Hepatocytes of Wistar and Sprague Dawley rats differ significantly in their central metabolism. J Cell Biochem 119(1): 909–917. https://doi.org/10.1002/jcb.26255
  15. Fujino H, Nakagawa M, Nishijima S, Okamoto N, Hanato T, Watanabe N, Shirai T, Kamiya H, Takeuchi Y (2005) Morphological differences in cardiovascular anomalies induced by bis-diamine between Sprague–Dawley and Wistar rats. Congenit Anom (Kyoto) 45: 52–58. https://doi.org/10.1111/j.1741-4520.2005.00063.x
  16. Bazilio DS, Rodrigues KL, Moraes DJA, Machado BH (2021) Distinct cardiovascular and respiratory responses to short-term sustained hypoxia in juvenile Sprague Dawley and Wistar Hannover rats. Auton Neurosci 230: 102746. https://doi.org/10.1016/j.autneu.2020.102746
  17. Snow JB, Kanagy NL, Walker BR, Resta TC (2009) Rat Strain Differences in Pulmonary Artery Smooth Muscle Ca2+ Entry Following Chronic Hypoxia. Microcirculation 16(7): 603–614. https://doi.org/10.1080/10739680903114268
  18. Svoboda J, Litvinec A, Kala D, Pošusta A, Vávrová L, Jiruška P, Otáhal J (2019) Strain differences in intraluminal thread model of middle cerebral artery occlusion in rats. Physiol Res 68(1): 37–48. https://doi.org/10.33549/physiolres.933958
  19. Kunze A, Zierath D, Drogomiretskiy O, Becker K (2014) Variation in behavioral deficits and patterns of recovery after stroke among different rat strains. Transl Stroke Res 5(5): 569–576. https://doi.org/10.1007/s12975-014-0337-y
  20. Raman RN, Pivetti CD, Ramsamooj R, Matthews DL, Demos SG, Troppmann C (2011) Factors influencing rat survival in a warm renal ischemia model: time to adapt the protocols. Transplant Proc 43(5): 1511–1514. https://doi.org/10.1016/j.transproceed.2011.01.177
  21. Bidani AK, Mitchell KD, Schwartz MM, Navar LG, Lewis EJ (1990) Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model. Kidney Int 38: 28–38. https://doi.org/10.1038/ki.1990.163
  22. Appenroth D, Lupp A, Kriegsmann J, Sawall S, Splinther J, Sommer M, Stein G, Fleck C (2001) Temporary warm ischaemia, 5/6 nephrectomy and single uranyl nitrate administration–comparison of three models intended to cause renal fibrosis in rats. Exp Toxicol Pathol 53(4): 316–324. https://doi.org/10.1078/0940-2993-00197
  23. Saracyn M, Czarzasta K, Brytan M, Murawski P, Lewicki S, Ząbkowski T, Zdanowski R, Cudnoch-Jędrzejewska A, Kamiński GW, Wańkowicz Z (2017) Role of Nitric Oxide Pathway in Development and Progression of Chronic Kidney Disease in Rats Sensitive and Resistant to its Occurrence in an Experimental Model of 5/6 Nephrectomy. Med Sci Monit 23: 4865–4873. https://doi.org/10.12659/msm.903820
  24. Erdely A, Freshour G, Tain YL, Engels K, Baylis C (2007) DOCA/NaCl-induced chronic kidney disease: a comparison of renal nitric oxide production in resistant and susceptible rat strains. Am J Physiol Renal Physiol 292(1): F192–F196. https://doi.org/10.1152/ajprenal.00146.2006
  25. Drábková N, Hojná S, Zicha J, Vaněčková I (2020) Contribution of selected vasoactive systems to blood pressure regulation in two models of chronic kidney disease. Physiol Res 69(3): 405–414. https://doi.org/10.33549/physiolres.934392
  26. de Oliveira MG, Nadruz W Jr, Mónica FZ (2022) Endothelial and vascular smooth muscle dysfunction in hypertension. Biochem Pharmacol 205: 115263. https://doi.org/10.1016/j.bcp.2022.115263
  27. Martínez-Díaz I, Martos N, Llorens-Cebrià C, Álvarez FJ, Bedard PW, Vergara A, Jacobs-Cachá C, Soler MJ (2023) Endothelin receptor antagonists in kidney disease. Int J Mol Sci 24(4): 3427. https://doi.org/10.3390/ijms24043427
  28. Podyacheva EY, Shmakova TV, Andreeva DD, Toropov RI, Cheburkin YV, Danilchuk MS, Martynov MO, Toropova YG (2023) Molecular markers profile of fibrosis in rats exposed to different doses of doxorubicin. J Evol Biochem Physiol 59(2): 359–368. https://doi.org/10.1134/S0022093023020059

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (84KB)
3.

Download (283KB)
4.

Download (345KB)
5.

Download (288KB)

Copyright (c) 2023 Н.И. Агалакова, Е.В. Михайлова, А.А. Пьянков, О.В. Надей, И.А. Ершов, М.М. Галагудза, А.Я. Багров, И.В. Романова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies