Age and Isotope-Geochemical Characteristics of Ta, Nb, W, Sn Mineralization Associated with Rare-Metal Granites (Khangilay Ore District, Eastern Transbaikalia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The age relations between the formation of the parent massif and the time of crystallization of the associated ore mineralization were established on the basis of isotope-geochronological study of the massifs-deposits of the Khangily ore district with various metallogenic specialization in Eastern Transbaikalia. In the Orlovka massif of Li-F granites, the crystallization time of columbite-tantalite (145 ± 1 Ma) and cassiterite (144.2 ± 0.3 Ma) (U-Pb, ID-TIMS) is almost identical to the crystallization time of zircon (140.6 ± 2.9 Ма (U-Pb, SHRIMP) and 145 ± 1 Ma (U-Pb, CA-ID-TIMS)) – an age marker of the formation of massifs. This fact testifies to the magmatogenic nature of rare-metal mineralization. In the Spokojnoye massif – the “standard type” of rare-metal peraluminous granites – a time gap with an interval of 0.6–3.8 Ma was revealed between the time of formation of the massif (141.3 ± 1.8 Ма, U-Pb, SHRIMP, 146.9 ± 0.7 Ма, Rb-Sr isotopic system) and crystallization of wolframite (141.8 ± 0.6, Rb-Sr isotopic system and 140.1 ± 1.4 Ма, Sm-Nd isotopic system). Perhaps this interval corresponds to the time of formation of the hydrothermal system, with which tungsten mineralization is genetically related.

About the authors

E. V. Badanina

Saint-Petersburg State University

Author for correspondence.
Email: e.badanina@spbu.ru
Russia, St.-Petersburg

L. F. Syritso

Saint-Petersburg State University

Email: rizng@mail.ru
Russia, St.-Petersburg

A. A. Ivanova

Institute of Precambrian Geology and Geochronology Russian Academy of Sciences

Author for correspondence.
Email: anna_al_ivanova@mail.ru
Russia, Saint Petersburg

N. G. Rizvanova

Institute of Precambrian Geology and Geochronology Russian Academy of Sciences

Author for correspondence.
Email: rizng@mail.ru
Russia, Saint Petersburg

References

  1. Абушкевич В.С., Сырицо Л.Ф. Изотопно-геохимическая модель формирования Li-F гранитов Хангилайского рудного узла в Восточном Забайкалье. Санкт-Петербург: Наука, 2007. 147 с.
  2. Анисимова И.В., Абушкевич В.С., Сырицо Л.Ф. и др. U-Pb и Pb-Pb исследование танталита – нетрадиционного минерала-геохронометра редкометальных гранитов (Орловское месторождение, Восточное Забайкалье) // Тр. XX симпозиума по геохимии изотопов. М.: ИГЕМ РАН, 2013. С. 30–32.
  3. Баданина Е.В. Первые данные о содержании вольфрама в высокоспециализированных гранитоидных расплавах – по данным изучения расплавных включений в кварце // Вопросы геохимии и типоморфизм минералов. Изд-во СПбГУ, 2008. Вып. 6. С. 42–49.
  4. Баданина Е.В., Сырицо Л.Ф., Абушкевич В.С. и др. Геохимия ультракалиевых риодацитовых магм из ареала Орловского массива Li-F гранитов в Восточном Забайкалье на основе изучения расплавных включений в кварце // Петрология. 2008. Т. 16. № 3. С. 317–330.
  5. Баданина Е.В., Сырицо Л.Ф., Волкова Е.В. и др. Состав расплава Li-F гранитов и его эволюция в процессе формирования рудоносного Орловского массива в Восточном Забайкалье // Петрология. 2010. Т. 18. № 2. С. 139–167.
  6. Залашкова Н.Е. Зональность метасоматически изменённых танталоносных гранитов // Минералого-геохимические и генетические особенности редкометальных апогранитов. / Под. ред. К.Д. Субботина. М.: Наука, 1969. С. 5–29.
  7. Зарайский Г.П. Условия образования редкометальных месторождений, связанных с гранитоидным магматизмом // Смирновский сборник-2004. М.: Фонд им. Ак. В.И. Смирнова, 2004. С. 105–192.
  8. Иванова А.А., Сальникова Е.Б., Котов А.Б. и др. U-Pb (ID-TIMS) датирование высокоурановых метамиктизированных цирконов: новые возможности известных подходов // Петрология. 2021. Т. 29. № 6. С. 656–667.
  9. Коваленко В.И. Петрология и геохимия редкометальных гранитоидов. Новосибирск: Наука, 1977. 206 с.
  10. Костицын Ю.А., Зарайский Г.П., Аксюк А.М. и др. Rb-Sr изотопные свидетельства генетической общности биотитовых и Li-F гранитов на примере месторождений Спокойнинское, Орловское и Этыкинское (Восточное Забайкалье) // Геохимия. 2004. № 9. С. 940–948.
  11. Марин Ю.Б., Бескин С.М. Принципы выделения и систематики фанерозойских гранитоидных формаций и ассоциирующих с ними месторождений полезных ископаемых // Зап. Ленингр. Горн. ин-та. 1983. Т. 95. С. 32–40.
  12. Ризванова Н.Г., Кузнецов А.Б. Новый подход для определения U-Pb-возраста касситерита методом ID-TIMS на примере Питкярантского месторождения олова // Геохимия. 2020. Т. 491. № 1. С. 47–51.
  13. Сырицо Л.Ф. Мезозойские гранитоиды Восточного Забайкалья и проблемы редкометального рудообразования. СПб.: Изд-во СПб. ун-та, 2002. 360 с.
  14. Сырицо Л.Ф., Баданина Е.В., Абушкевич В.С. и др. Продуктивность редкометальных плюмазитовых гранитов и условия образования месторождений вольфрама // Геология рудн. месторождений. 2018. Т. 60. С. 38–56.
  15. Сырицо Л.Ф., Табунс Э.В., Волкова Е.В. и др. Геохимическая модель формирования Li-F гранитов Орловского массива, Восточное Забайкалье // Петрология. 2001. № 13. Т. 9. С. 313–336.
  16. Сырицо Л.Ф., Иванова А.А., Баданина Е.В. и др. Амазонитовые Li-F граниты REE-Zr-Nb-Th-U специализации: геохимия, минералогия, изотопная геохронология Тургинского массива в Восточном Забайкалье // Петрология. 2021. Т. 29. № 1. С. 64–89.
  17. Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М.: Наука, 1977. 278 с.
  18. Травин А. В., Юдин Д. С., Владимиров А. Г. и др. Термохронология Чернорудской гранулитовой зоны (Ольхонский регион, Западное Прибайкалье) // Геохимия. 2009. № 11. С. 1181–1199.
  19. Чевычелов В.Ю. Распределение летучих, породообразующих и рудных компонентов в магматических системах: экспериментальные исследования. Автореф. дисс. … д-ра геол.-мин. наук. Черноголовка: ИЭМ РАН, 2013. 62 с.
  20. Чернышев И. В., Гольцман Ю.В., Баирова Э.Д. и др. Rb‑Sr-геохронометрия процессов последовательного формирования гранитов, грейзенизации и гидротермальной минерализации: Джидинское W-Mo-месторождение, Западное Забайкалье// Докл. АН. 1998. Т. 360. № 4. С. 537–540.
  21. Ярмолюк В.В., Коваленко В.В. Глубинная геодинамика, мантийные плюмы и их роль в формировании Центрально-Азиатского складчатого пояса // Петрология. 2003. Т. 11. № 6. С. 556–586.
  22. Abushkevich V.S., Badanina E.V., Syritso L.F. Wolframite and cassiterite: age of forming and isotope characteristics Sr and Nd // The 20-th General Meeting of the International Mineralogical Association (Budapest, Hungary, 2010). Budapest, Hungary, 2010. P. 419.
  23. Che X.-D., Wang R.-C., Wu F.-Y. et al. Episodic Nb-Ta mine-ralization in South China: contraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating // Ore Geol. Rev. 2019. V. 105. P. 71–85.
  24. Dolgopolova A., Seltmann R., Stanley C. Isotope systematics of ore-bearing and host rocks of the Orlovka-Spokojnoe mining district, eastern Transbaikalia, Russia // Mineral. Deposit Res. Eds. Jingwen Mao, Frank P. Bierlein V.I. Springer, 2005. P. 747–751.
  25. Krogh T.E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination // Geochim. Cosmochim. Acta. 1973. V. 37. P. 485–494.
  26. Ludwig K.R. Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 2003. V. 4.
  27. Ludwig K.R. PbDat for MS-DOS, version 1.21 // U.S. Geol. Surv. Open-File Rept. 88–542. 1991. 35 p.
  28. Manhes G., Minster J.E., Allegre C.J. Comparative uranium-lead and rubidium-srtontium study of the Severin amphoterite: consequences for early solar system chronology // EPSL. 1978. V. 39. № 1. P. 14–24.
  29. Mattinson J.M. Zircon U-Pb chemical abrasion “CA-TIMS” method: combined annealing and multi-step partial dissolution analysis for improved and accuracy of zircon ages // Chem. Geology. 2005. V. 220. P. 47–66.
  30. Stacey J.S., Kramers I.D. Approximation of terrestrial lead isotope evolution by a two-stage model // Earth Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.
  31. Steiger R.H., Jager E. Subcomission of geochronology: Convention of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1976. V. 36. № 2. P. 359–362.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (644KB)
3.

Download (193KB)
4.

Download (38KB)

Copyright (c) 2023 Е.В. Баданина, Л.Ф. Сырицо, А.А. Иванова, Н.Г. Ризванова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies