Issledovanie prochnosti, relaksatsionnoy i korrozionnoy stoykosti ul'tramelkozernistoy austenitnoy stali 08Kh18N10T, poluchennoy metodom RKU-pressovaniya. II. issledovanie relaksatsionnykh svoystv i stoykosti protiv mezhkristallitnoy korrozii

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Relaxation resistance and corrosion resistance of samples of ultrafine-grained steel 08H18N10T obtained by the method of equal-channel angular pressing at temperatures of 150 and 450 °C are investigated. For ultrafine-grained steel with high values of the limit of macroelasticity and yield strength, a decrease in the Hall—Petch coefficient due to fragmentation of δ-ferrite particles at the method of equal-channel angular pressing is shown. It is established that the samples of ultrafine-grained steel have 2-3 times higher relaxation resistance compared to coarse-grained steel. It is noted that the method of equal-channel angular pressing leads to an increase in the rate of general corrosion. At the same time, despite the decrease in corrosion resistance, samples of ultrafine-grained steels have high resistance to intercrystalline corrosion. It is established that the decrease in corrosion resistance of ultrafine-grained steel is due to an increase in the volume fraction of martensite deformation at the method of equal-channel angular pressing.

About the authors

V. I Kopylov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

V. N Chuvil'deev

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

A. V Nokhrin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

N. A Kozlova

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

M. K Chegurov

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

N. V Melekhin

Physics and Technology Research Institute of Lobachevsky State University of Nizhniy Novgorod (PTRI UNN)

Author for correspondence.
Email: kopylov@nifti.unn.ru
Nizhniy Novgorod, Russia

References

  1. Сагарадзе, В.В. Коррозионное растрескивание аустенитных и ферритоперлитных сталей / В.В. Сагарадзе, Ю.И. Филиппов, М.Ф. Матвиенко [и др.]. - Екатеринбург: Изд. УрО РАН, 2004. 228 с.
  2. Сагарадзе, В.В. Упрочнение и свойства аустенитных сталей / В.В. Сагарадзе, А.И. Уваров. - Екатеринбург: Изд. ИФМ им. М.Н. Михеева РАН, 2013. 720 с.
  3. Lo, K.H. Recent developments in stainless steels / Lo K.H., Shek C.H., Lai J.K.L. // Mater. Sci. Eng. R. 2009. V.65. Is.4-6. P.39-104.
  4. Jeong, S.W.Comparative study of hardening mechanisms during aging of a 304 stainless steel containing a¢-martensite / Jeong S.W., Kang U.G., Choi J.Y., Nam W.J. //j. Mater. Eng. Performance. 2012. V.21. Is.9. P.1937-1942.
  5. Zergani, A. Evolutions of mechanical properties of AISI 304L stainless steel under shear loading / A. Zergani, H. Mirzadeh, R. Mahmudi // Mater. Sci. Eng. A. 2020. V.791. Art.139667.
  6. Mola, J. Dynamic strain aging mechanisms in a metastable austenitic stainless steel / Mola J., Luan G., Huang Q. [et al.] // Acta Materialia. 2021. V.212. Art.116888.
  7. Hsieh, C.-C. Dispersion strengthening behavior of s phase in 304 modified stainless steels during 1073 K hot rolling / Hsieh C.-C., Lin D.-Y., Wu W.// Metals Mater.Intern. 2007. V.13. Is.5. P.359-363.
  8. Hsieh, C.-C. Precipitation behavior of s phase in 19Cr-9Ni-2Mn and 18Cr-0,75Si stainless steels hot-rolled at 800 °C with various reduction ratios / Hsieh C.-C., Lin D.-Y., Wu W. // Mater. Sci. Eng. A. 2007. V.467. Is.1-2. P.181-189.
  9. Zhou, Q. An insight into oversaturated deformation-induced sigma precipitation in Super304H austenitic stainless steel / Zhou Q., Liu J., Gao Y. // Mater. Design. 2019. V.181. Art.108056.
  10. Bai, G.Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel / Bai G., Lu S., Li Y. // Corrosion Sci. 2015. V.90. P.347-358.
  11. Arganis-Jua¢rez, C.R. Sensitization of an austenitic stainless steel due to the occurrence of d-ferrite / C.R. Arganis-Jua¢rez, A. Va¢zquez, N.F. Garza-Montes-de-Oca, R. Cola¢s // Corrosion Rev. 2019. V.37. Is.2. P.179-186.
  12. Shi, H. Hot salt corrosion of additively manufactured stainless steel 316L and Inconel 718 in MgCl2/KCl/NaCl chloride salt at 700 °C / Shi H., Wu T., Gong Q. [et al.] // Corrosion Sci. 2022. V.207. Art.110561.
  13. Wang, J. Effect of d-ferrite on the stress corrosion cracking behavior of 321 stainless steel / Wang J., Su H., Chen K. [et al.] // Corrosion Sci. 2019. V.158. Art.108079.
  14. Wang, Q. Role of d-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel / Wang Q., Chen S., Lu X. [et al.] //j. Mater. Sci. Technol. 2022. V.114. P.7-15.
  15. Warren, A.D. The role of ferrite in type 316H austenitic stainless steels on the susceptibility to creep cavitation / A.D. Warren, I.J. Griffiths, R.L. Harniman [et al.] // Mater. Sci. Eng. A. 2015. V.635. P.59-69.
  16. J‡rvenp‡‡, A. Processing and properties of reversion-treated austenitic stainless steels / A. J‡rvenp‡‡, M. Jaskari, A. Kisko, P. Karjalainen // Metals. 2020. V.10. Is.2. P.281.
  17. Tikhonova, M. Microstructure and mechanical properties of austenitic stainless steels after dynamic and post-dynamic recrystallization treatment / M. Tikhonova, R. Kaibyshev, A. Belyakov // Advanced Eng. Mater. 2018. V.20. Is.7. Art.1700960.
  18. Panov, D.O. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation / D.O. Panov, R.S. Chernichenko, S.V. Naumov [et al.] // Mater. Letters. 2021. V.303. Art.130585.
  19. Panov, D. Mechanisms on the reverse martensite-to-austenite transformation in metastable austenitic stainless steel / D. Panov, E. Kudryavtsev, R. Chernichenko [et al.] // Metals. 2021. V.11. Is.4. P.599.
  20. Sohrabi, M.J. Deformation-induced martensite in austenitic stainless steels: A review / M.J. Sohrabi, M. Naghizadeh, H. Mirzadeh // Archives of Civil and Mechanical Eng. 2020. V.20. Is.3. P.124.
  21. Shen, Y.F. Twinning and martensite in a 304 austenitic stainless steel / Y.F. Shen, X.X. Li, X. Sun [et al.] // Mater. Sci. Eng. A. 2012. V.552. P.514-522.
  22. Talonen, J. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels /j. Talonen, H. H‡nninen // Acta Materialia. 2007. V.55. Is.18. P.6108-6118.
  23. Gupta, R.K. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review / R.K. Gupta, N. Birbilis // Corrosion Sci. 2015. V.92. P.1-15.
  24. Shit, G. The effect of severe plastic deformation on the corrosion resistance of AISI type 304L stainless steel / G. Shit, S. Ningshen //j. Mater. Eng. Perform. 2020. V.29. Is.9. P.5696-5709.
  25. He, Q. Gradient microstructure design in stainless steel: A strategy for uniting strength-ductility synergy and corrosion resistance / He Q., Wei W., Wang M.-S. [et al.] // Nanomaterials. 2021. V.11. Is.9. Art.2356.
  26. Chen, X. Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steels / Chen X., Gussev M., Balonis M. [et al.] // Mater. Design. 2021. V.203. Art.109614.
  27. Yanushkevich, Z. Hall-Petch relationship for austenitic stainless steels processed by large strain warm rolling / Z. Yanushkevich, S.V. Dobatkin, A. Belyakov, R. Kaibyshev // Acta Materialia. 2017. V.136. P.39-48.
  28. Du, C. A 2.9 GPa strength nano-gradient and nano-precipitated 304L-type austenitic stainless steel / Du C., Liu G., Sun B. [et al.] // Materials. 2020. V.13. Is.23. Art.5382.
  29. Misra, R.D.K. Microstructure and deformation behavior of phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel / R.D.K. Misra, S. Nayak, S.A. Mali [et al.] // Met. Mater. Trans. A. 2009. V.40. P.2498-2509.
  30. Amininejad, A. Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling / A. Amininejad, R. Jamaati, S.J. Hosseinipour // Mater. Chem. Phys. 2020. V.256. Art.123668.
  31. Li, J. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure / Li J., Cao Y., Gao B. [et al.] //j. Mater. Sci. 2018. V.53. Is.14. P.10442-10456.
  32. Shirdel, M. Enhanced mechanical properties of microalloyed austenitic stainless steel produced by martensite treatment / M. Shirdel, H. Mirzadeh, M.H. Parsa // Advanced Eng. Mater. 2015. V.17. Is.8. P.1226-1233.
  33. Misra, R.D.K. Relationship of grain size and deformation mechanism to the fracture behavior in high strength - high ductility nanostructured austenitic stainless steel / R.D.K. Misra, X.L. Wan, V.S.A. Challa [et al.] // Mater. Sci. Eng. A. 2015. V.626. P.41-50.
  34. Rybal'chenko, O.V. Strength of ultrafine-grained corrosion-resistance steels after severe plastic deformation / O.V. Rybal'chenko, S.V. Dobatkin, L.M. Kaputkina [et al.] // Mater. Sci. Eng. A. 2004. V.387-389. Is.1-2. P.244-248.
  35. Добаткин, С.В. Формирование субмикрокристаллической структуры в аустенитной стали 08Х18Н10Т при РКУ прессовании и нагреве / С.В. Добаткин, О.В. Рыбальченко, Г.И. Рааб // Металлы. 2006. №1. С.48-54.
  36. Dobatkin, S.V. Structure formation, phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating / S.V. Dobatkin, O.V. Rybal'chenko, G.I. Raab // Mater. Sci. Eng. A. 2007. V.463. Is.1-2. P.41-45.
  37. Добаткин, С.В. Структура и усталостная прочность стали 08Х18Н10Т после равноканального углового прессования и нагрева / С.В. Добаткин, В.Ф. Терентьев, В. Скротцки [и др.] // Металлы. 2012. №6. C.45-56.
  38. Косицына, И.И. Формирование высокопрочного и высокопластичного состояния в метастабильных аустенитных сталях методом равноканально-углового прессования / И.И. Косицына, В.В. Сагарадзе, В.И. Копылов // ФММ. 1999. Т.88. №5. С.84-89.
  39. Segal, V. Equal-channel angular extrusion (ECAE): From a laboratory curiosity to an industrial technology / V. Segal // Metals. 2020. V.10. Is.2. P.244.
  40. Segal, V. Review: Modes and processes of severe plastic deformation / V. Segal // Materials. 2018. V.11. Is.7. P.1175.
  41. Segal, V.M. Fundamentals and engineering of severe plastic deformation / V.M. Segal, I.J. Beyerlein, C.N. Tome, V.N. Chuvil'deev, V.I. Kopylov. - N.Y.: Nova Science Publ., 2010. 542 p.
  42. Huang, C.X. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by equal-channel angular pressing / Huang C.X., Yang G., Wang C. [et al.] // Met. Mater. Trans. A. 2011. V.42. Is.7. P.2061-2071.
  43. Tirekar, S. Towards engineering of mechanical properties through stabilization of austenite in ultrafine grained martensite-austenite dual phase steel processed by accumulative roll bonding / S. Tirekar, H.R. Jafarian, A.R. Eivani // Mater. Sci. Eng. A. 2017. V.684. P.120-126.
  44. Liu, M. Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered of recrystallized nanostructures / Liu M., Gong W., Zheng R. [et al.] // Acta Materialia. 2022. V.226. Art.117629.
  45. Miyamoto, H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview / H. Miyamoto // Mater. Trans. 2016. V.57. Is.5. P.559-572.
  46. Ura-Bin¢czyk, E. Effect of grain refinement on the corrosion resistance of 316L stainless steel / E. Ura-Bin¢ czyk // Materials. 2021. V.14. Is.24. Art.7517.
  47. Krawczynska, A.T. Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion / A.T. Krawczynska, W. Chrominski, E. Ura-Binczyk [et al.] // Mater. Design. 2017. V.136. P.34-44.
  48. Krawczynska, A.T.Intergranular corrosion resistance of nanostructured austenitic stainless steel / A.T. Krawczynska, M. Gloc, K. Lublinska //j. Mater. Sci. 2013. V.48. Is.13. P.4517-4523.
  49. Pisarek, M. Effect of hydrostatic extrusion on the corrosion resistance of type 316 stainless steel / M. Pisarek, P. Keedzierzawski, M. Janik-Czachor, K.J. Kurzydlowski // Corrosion. 2008. V.64. Is.2. P.131-137.
  50. Chen, X. Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steel / X. Chen, M. Gussev, M. Balonis [et al.] // Mater. Design. 2021. V.203. Art.109614.
  51. Pisarek, M. Effect of hydrostatic extrusion on passivity breakdown on 303 austenitic stainless steel in chloride solution / M. Pisarek, P. Kedzierzawski, M. Janik-Czachor, K.J. Kurzydlowski //j. Solid State Electrochemistry. 2009. V.13. Is.2. P.283-291.
  52. Jinlong, L. The effect of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steel / L. Jinlong, L. Hongyun, L. Tongxiang, G. Wenli // Mater. Res. Bull. 2015. V.70. P.896-907.
  53. Hung, E. Impact of nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels / E. Hung, R. Prasath Babu, I. Monnet [et al.] // Appl. Surf. Sci. 2017. V.392. P.1026-1035.
  54. Wang, S.G. Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature / Wang S.G., Sun M., Xu Y.H. [et al.] //j. Mater. Sci. Technol. 2018. V.34. Is.12. P.2498-2506.
  55. Tiamiyu, A.A. Corrosion behavior of metastable AISI 321 austenitic stainless steel: Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media / A.A. Tiamiyu, U. Eduok, J.A. Szpunar, A.G. Odeshi // Sci. Rep. 2019. V.9. Art.12116.
  56. Zhang, H. Effect of grain ultra-refinement on corrosion behavior of ultra-high strength high nitrogen stainless steel / Zhang H., Xue P., Wu L.H. [et al.] // Corrosion Sci. 2020. V.174. Art.108847.
  57. Wang, S.G. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel / Wang S.G., Sun M., Liu S.Y. [et al.] //j. Mater. Sci. Technol. 2020. V37. P.161-172.
  58. Lei, Y.B. Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing / Lei Y.B., Wang Z.B., Zhang B. [et al.] // Acta Materialia. 2021. V.208. Art.116773.
  59. Mordyuk, B.N. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel / B.N. Mordyuk, G.I. Prokopenko, M.A. Vasylyev, M.O. Iefimov // Mater. Sci. Eng. A. 2007. V.458. Is.1-2. P.253-261.
  60. Tiamiyu, A.A. Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel / A.A. Tiamiyu, U. Eduok, A.G. Odeshi, J.A. Szpunar // Mater. Sci. Eng. A. 2019. V.745. P.1-9.
  61. Бордзыка, А.М. Релаксация напряжений в металлах и сплавах / А.М. Бордзыка, Л.Б. Гецов. - М.: Наука, 1978. 256 с.
  62. Микропластичность: cб. статей под ред. В.Н. Геминова, А.Г. Рахштадта / пер. с англ. Е.К. Захарова. - М.: Металлургия, 1972. 340 с.
  63. Головин, С.А. Микропластичность и усталость металлов / С.А. Головин, А. Пушкар. - М.: Металлургия, 1980. 240 с.
  64. Luo, J. Investigation of high-temperature stress relaxation behavior of Ti-6Al-4V sheet / Luo J., Xiong W., Li X., Chen J. // Mater. Sci. Eng. A. 2019. V.743. P.755-763.
  65. Liu, P. Relationship between constant-load creep, decreasing-load creep and stress relaxation of titanium alloy / Liu P., Zong Y., Shan D., Guo B. // Mater. Sci. Eng. A. 2015. V.638. P.106-113.
  66. Peng, H.-L. Effect of grain size on high-temperature stress relaxation behavior of fine-grained TC4 titanium alloy / Peng H.-L., Li X.-F., Chen X. [et al.] // Trans. Nonferrous Metals Soc. China. 2020. V.30. Is.3. P.668-677.
  67. Butt, M.Z. On the strength and stress-relaxation response of fine-grained Cu-42,2at%Zn-0,6at%Pd alloy polycrystals / M.Z. Butt, M.S. Khiliji //j. Alloys Compounds. 2009. V.479. Is.1-2. P.252-256.
  68. Suzuki, Y. Effect of surface area of grain boundaries on stress relaxation behavior in pure copper over wide range of grain size / Y. Suzuki, K. Ueno, K. Murasawa [et al.] // Mater. Sci. Eng. A. 2020. V.794. Art.139585.
  69. Butt, M.Z. Loss a stress equivalence in the strain-rate sensitivity of flow stress in fine-grain polycrystalline copper / M.Z. Butt, M. Ashraf // Phys. Status Solidi (a). 1999. V.173. Is.2. P.349-356.
  70. Mohebbi, M.S. Stress relaxation and flow behavior of ultrafine grained AA1050 / M.S. Mohebbi, A. Akbarazadeh, Y.-O. Yoon, S.-K. Kim // Mechanics of Mater. 2015. V.89. P.23-34.
  71. Wang, Y.M. Temperature-depended strain rate sensitivity and activation volume of nanocrystalline Ni / Wang Y.M., Hamza A.V., Ma E. // Acta Materialia. 2006. V.54. Is.10. P.2715-2726.
  72. Kapoor, R. Deformation behavior of an ultrafine-grained Al-Mg alloy produced by equal-channel angular pressing / R. Kapoor, J.K. Chakravartty // Acta Materialia. 2007. V.55. Is.16. P.5408-5418.
  73. Ko, Y.G. Load relaxation behavior of ultra-fine grained Ti-6Al-4V alloy / Ko Y.G., Kim J.H., Lee C.S. [et al.] // Mater. Sci. Forum. 2005. V.475-479. P.2955-2960.
  74. Goyal, A. Grain boundary sliding and strain rate sensitivity of coarse and fine/ultrafine grained 5082 aluminum alloys / A. Goyal, V. Doquet, A. Pouya // Met. Mater. Trans. A. 2020. V.51. Is.3. P.1109-1122.
  75. Чувильдеев, В.Н. Влияние процессов возврата и рекристаллизации на параметры соотношения Холла-Петча в субмикрокристаллических металлах. I. Экспериментальные исследования / В.Н. Чувильдеев, А.В. Нохрин, М.М. Мышляев [и др.] // Металлы. 2018. №1. C.81-102.
  76. V.N. Chuvil'deev, A.V. Nokhrin, M.M. Myshlyaev [et al.] "Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters in Submicrocrystalline Metals: I. Experimental Studies".Russian Metallurgy (Metally). 2018. №1. P.71-89.
  77. Чувильдеев, В.Н. Неравновесные границы зерен в металлах. Теория и приложения / В.Н. Чувильдеев. - М.: Физматлит, 2004. 304 с.
  78. Пиккеринг, Ф.Б. Физическое металловедение и разработка сталей / Ф.Б. Пиккеринг. - М.: Металлургия, 1982. 182 с.
  79. Гольдштейн, М.И. Металлофизика высокопрочных сплавов / М.И. Гольдштейн, В.С. Литвинов, Б.М. Бронфин. - М.: Металлургия, 1986. 312 с.
  80. Чувильдеев, В.Н. Влияние процессов возврата и рекристаллизации на параметры соотношения Холла-Петча в субмикрокристаллических металлах. II. Модель расчета параметров соотношения Холла-Петча / В.Н. Чувильдеев, А.В. Нохрин, М.М. Мышляев [и др.] // Металлы. 2018. №3. C.73-87.
  81. V.N. Chuvil'deev, A.V. Nokhrin, M.M. Myshlyaev [et al.] "Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters in Submicrocrystalline Metals: II. Model for Calculating the Hall-Petch Relation Parameters".Russian Metallurgy (Metally). 2018. №5. P.487-499.
  82. Чувильдеев, В.Н. Влияние процессов возврата и рекристаллизации на параметры соотношения Холла-Петча в субмикрокристаллических металлах. III. Модель влияния процессов возврата и рекристаллизации на параметры соотношения Холла-Петча / В.Н. Чувильдеев, А.В. Нохрин, М.М. Мышляев [и др.] // Металлы. 2018. №5. C.83-87.
  83. V.N. Chuvil'deev, A.V. Nokhrin, M.M. Myshlyaev [et al.] "Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters in Submicrocrystalline Metals: III. Model for the Effect of Recovery and Recrystallization on the Hall-Petch Relation Parameters".Russian Metallurgy (Metally). 2018. №9. P.867-879.
  84. Фрост, Г.Дж. Карты механизмов деформации / Г.Дж. Фрост, М.Ф. Эшби. - Челябинск: Металлургия, 1989. 328 с.
  85. Кузнецов, А.Р. Исследование деформационно-стимулированной сегрегации в сплаве Fe-Cr-Ni / А.Р. Кузнецов, С.А. Стариков, В.В. Сагарадзе [и др.] // ФММ. 2004. Т.98. №3. С.65-71.
  86. Дерягин, А.И. Низкотемпературное механоиндуцированное атомное расслоение в хромоникелевых сталях / А.И. Дерягин, В.A. Завалишин, В.В. Сагарадзе, А.Р. Кузнецов // ФММ. 2000. Т.89. №6. С.82-93.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies