Effect of Peroxynitrite and tert-Butyl Hydroperoxide on Thiol Ligands of Dinitrosyl Iron Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Low molecular weight dinitrosyl iron complexes (DNICs) with thiol-containing ligands are a physiological form for deposit and transport of nitric oxide (NO) in the organism, herewith DNICs can exhibit antioxidant and antiradical properties. It was that DNICs containing cysteine, glutathione and lipoic acid as ligands, decreased the rate of dihydrodamine oxidation by peroxynitrite formed during 3-morpholinononymine decomposition. Thiol (sulfhydryl) ligands are present in DNICs in the form of thiolate anions (R-S), which protects these groups from oxidation by peroxynitrite. When tert-butyl peroxide was used as an oxidizer at low concentration, the protective effect of DNICs on their SH-groups was observed for complexes with lipoic acid (LA-DNIC) and with glutathione (GS-DNIC). LA-DNIC was more resistant to oxidizing agents and more effective peroxynitrite trap than other DNICs. DNICs associated with bovine serum albumin had a negligible protective effect on cysteine residue during oxidation by peroxynitrite and tert-butyl hydroperoxide. The obtained results allow us to consider low molecular weight DNICs with thiol ligands as peroxynitrite traps and thiol residues protectors in proteins.

About the authors

I. S. Pugachenko

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: aftopunov@yandex.ru
Russia, 119071, Moscow

E. I. Nasybullina

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: aftopunov@yandex.ru
Russia, 119071, Moscow

O. V. Kosmachevskaya

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: aftopunov@yandex.ru
Russia, 119071, Moscow

K. B. Shumaev

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: aftopunov@yandex.ru
Russia, 119071, Moscow

A. F. Topunov

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: aftopunov@yandex.ru
Russia, 119071, Moscow

References

  1. Hsiao H.-Y., Chung C.-W., Santos J.H., Villaflores O.B., Lu T.-T. // Dalton Transactions. 2019. V. 48. № 26. P. 9431–9453.
  2. Vanin A.F. // Nitric Oxide. 2016. V. 54. P. 15–29.
  3. Vanin A.F., Mokh V.P., Serezhenkov V.A., Chazov E.I. // Nitric Oxide. 2007. V. 16. № 3. P. 322–330.
  4. Kapelko V.I., Lakomkin V.L., Abramov A.A., Lukoshkova E.V., Undrovinas N.A., Khapchaev A.Y., Shirinsky V.P. // Oxid. Med. Cell. Longev. 2017. V. 2017. e9456163. https://doi.org/10.1155/2017/9456163
  5. Remizova M.I., Kochetygov N.I., Gerbout K.A., Lakomkin V.L., Timoshin A.A., Burgova E.N., Vanin A.F. // Eur. J. Pharmacol. 2011. V. 662. № 1–3. P. 40–46.
  6. Bor-Kucukatay M., Wenby R.B., Meiselman H.J., Baskurt O.K. // Am. J. Physiol. Heart Circ. Physiol. 2003. V. 284. P. 1577–1584.
  7. Shamova E.V., Bichan O.D., Drozd E.S., Gorudko I.V., Chizhik S.A., Shumaev K.B. et al. // Biophysics. 2011. V. 56. № 2. P. 237–242.
  8. Igrunkova A., Fayzullin A., Serejnikova N., Lipina T., Pekshev A., Vanin A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 5. e4439. https://doi.org/10.3390/ijms24054439
  9. Чазов Е.И., Родненков О.В., Зорин А.В., Лакомкин В.Л., Грамович В.В., Выборов О.Н. и др. // Кардиология. 2011. Т. 51. № 11. С. 28–37.
  10. Родненков О.В., Зорин А.В., Гостеев А.Ю., Драгнев А.Г., Чазов Е.И. // Евразийский Кардиологический Журнал. 2016. № 3. С. 186–187.
  11. Shumaev K.B., Petrova N.E., Zabbarova I.V., Vanin A.F., Topunov A.F., Lankin V.Z., Ruuge E.K. // Biochemistry (Moscow). 2004. V. 69. № 5. P. 569–574.
  12. Shumaev K.B., Gubkin A.A., Serezhenkov V.A., Lobysheva I.I., Kosmachevskaya O.V., Ruuge E.K. et al. // Nitric Oxide. 2008. V. 18. № 1. P. 37–46.
  13. Shumaev K.B., Kosmachevskaya O.V., Grachev D.I., Timoshin A.A., Topunov A.F., Lankin V.Z., Ruuge E.K. // Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2021. V. 15. № 4. P. 313–319.
  14. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Chumikina L.V., Arabova L.I., Yaglova N.V. et al. // Appl. Biochem. Microbiol. 2021. V. 57. № 4. P. 411–420.
  15. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Int. J. Mol. Sci. 2021. V. 22. № 24. e13649. https://doi.org/10.3390/ijms222413649
  16. Martusevich A.K., Soloveva A.G., Dmitrochenkov A.V., Ezhevskaya A.A., Razumovsky A.V. // Annual Research & Review in Biology. 2018. V. 26. № 6. P. 1–11.
  17. Martusevich A.K., Soloveva A.G., Peretyagin S.P., Davyduk A.V. // Biophysics. 2014. V. 59. № 6. P. 954–959.
  18. Dungel P., Perlinge M., Weidinger A., Redl H., Kozlov A.V. // Free Radic. Biol. Med. 2015. V. 89. P. 300–310.
  19. Shumaev K.B., Dudylina A.L., Ivanova M.V., Pugachenko I.S., Ruuge E.K. // BioFactors. 2018. V. 44. № 3. P. 237–244.
  20. Shumaev K.B., Gorudko I.V., Kosmachevskaya O.V., Grigoryeva D.V., Panasenko O.M., Vanin A.F., Topunov A.F. et al. // Oxid. Med. Cell. Longev. 2019. V. 2019. e2798154. https://doi.org/10.1155/2019/2798154
  21. Vanin A.F., Pekshev A.V., Vagapov A.B., Sharapov N.A., Lakomkin V.L., Abramov A.A. et al. // Biophysics (Oxf). 2021. V. 66. № 1. P. 155–163.
  22. Vanin A.F., Tronov V.A., Borodulin R.R. // Cell Biochem. Biophys. 2021. V. 79. № 1. P. 93–102.
  23. Vanin A.F. // Biochemistry (Moscow). 2022. V. 87. № 11. P. 1367–1386.
  24. Bosworth C.A., Toledo J.C. Jr., Zmijewski J.W., Lancaster J.R. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 12. P. 4671–4676.
  25. Karoui H., Hogg N., Kalyanaraman B. // Arch. Biochem. Biophys. 1996. V. 330. № 1. P. 115–124.
  26. Shumaev K.B., Kosmachevskaya O.V., Timoshin A.A., Vanin A.F., Topunov A.F. // Methods Enzymol. 2008. V. 436. P. 445–461.
  27. Singh R.J., Hogg N., Joseph J., Konorev E., Kalyanaraman B. // Arch. Biochem. Biophys. 1999. V. 361. № 2. P. 331–339.
  28. Hoff S., Larsen F.H, Andersen M.L., Lund M.N. // Analyst. 2013. V. 138. № 7. P. 2096–2103.
  29. Laemmli U.K. // Nature. 1970. V. 227. № 5259. P. 680–685.
  30. Vanin A.F., Poltorakov A.P., Mikoyan V.D., Kubrina L.K., Burbaev D.S. // Nitric Oxide. 2011. V. 23. № 2. P. 136–149.
  31. Flinck M., Kramer S.H., Pedersen S.F. // Acta Physiol. (Oxf). 2018. V. 223. № 3. e13068. https://doi.org/10.1111/apha.13068
  32. Лобышева И.И., Сереженков В.А., Ванин А.Ф. // Биохимия. 1999. V. 64. № 2. P. 194–200.
  33. Tien M., Bucher J.R., Aust S.D. // Biochem. Biophys. Res. Commun. 1982. V. 107. № 1. P. 279–285.
  34. Younes M., Strubelt O. // J. Appl. Toxicol. 1990. V. 10. № 5. P. 319–324.
  35. Olson A.S., Jameson A.J., Kyasa S.K., Evans B.W., Dussault P.H. // ACS Omega. 2018. V. 3. № 10. P. 14054–14063.
  36. Daiber A., Daub S., Bachschmid M., Schildknecht S., Oelze M., Steven S. et al. // Int. J. Mol. Sci. 2013. V. 14. № 4. P. 7542–7570.
  37. Fabisiak J.P., Sedlov A., Kagan V.E. // Antioxid. Redox Signal. 2002. V. 4. № 5. P. 855–865.
  38. Tran N.G., Kalyvas H., Skodje K.M., Hayashi T., Moënne-Loccoz P., Callan P.E. et al. // J. Am. Chem. Soc. 2011. V. 133. № 5. P. 1184–1187.
  39. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 5. P. 512–520.
  40. Akentieva N., Gizatullin A., Sanina N., Shkondina N., Abramova K., Tikhonov V. et al. // Biointerface Res. Appl. Chem. 2023. V. 13. № 4. e344. https://doi.org/10.33263/BRIAC134.344

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (37KB)
3.

Download (66KB)
4.

Download (131KB)
5.

Download (373KB)
6.

Download (86KB)
7.

Download (699KB)
8.

Download (604KB)

Copyright (c) 2023 И.С. Пугаченко, Э.И. Насыбуллина, О.В. Космачевская, К.Б. Шумаев, А.Ф. Топунов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies