Decolorization of Dyes in the Bioelectrochemical System Depending on the Immobilization of Shewanella oneidensis MR-1 Cells on the Anode Surface and Electrical Stimulation of the External Circuit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the polarity of the electrical stimulation of the external circuit of the bioelectrochemical systems, as well as the immobilization of Shewanella oneidensis MR-1 cells containing the DyP peroxidase gene on the rate of discoloration of dyes of different types was found. For the crystal violet triphenylmethane dye, the maximum decolorization rate by suspended S. oneidensis MR-1 cells 2.05 ± 0.07 μM/h was noted in the case of connecting a 1.2 V direct polarity DC voltage source. One of the minimum rates was observed in the case of reverse polarity of the connection. In the case of cells immobilized on the anode, the rate was higher, reaching 2.91 ± 0.09 μM/h and did not decrease with increasing substrate concentration. The lowest values were also noted for the reverse connection of the voltage source. In case of the azo dye congo red, the maximum rate was found for a source with direct connection and an open circuit (0.26 ± 0.01 and 0.29 ± ± 0.02 μM/h, respectively), the minimum value is 0.11 ± 0.02 μM/h for reverse connection. For the crystal violet decolorization products, a significant decrease in the intensity of the main absorption peak at 590 nm band was found, with no notable hypsochromic shift. The qualitative changes in the decolorization products composition are indicated by the appearance, in case of a direct polarity of the ionistor connection, of a new absorption maximum in the region of 360 nm. The results may be of interest for the development of new methods of bioelectrochemical cleaning.

About the authors

A. A. Samkov

Kuban state university

Author for correspondence.
Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar

Yu. A. Chugunova

Kuban state university; Kuban State Medical University

Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar; Russia, 350063, Krasnodar

M. N. Kruglova

Kuban state university

Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar

E. V. Moiseeva

Kuban state university

Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar

N. N. Volchenko

Kuban state university

Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar

A. A. Khudokormov

Kuban state university

Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar

S. M. Samkova

Kuban state university

Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar

E. V. Karaseva

Kuban state university

Email: andreysamkov@mail.ru
Russia, 350040, Krasnodar

References

  1. Дебабов В.Г. // Микробиология. 2008. Т. 77. № 2. С. 149–157.
  2. Решетилов А.Н. // Прикл. биохимия и микробиология. 2015. Т. 51. № 2. С. 268–274.
  3. Li W.-W., Yu H.-Q. // Biotechnol. Adv. 2015. V. 33. P. 1–12.
  4. Алферов С.В., Арляпов В.А., Алферов В.А., Решетилов А.Н. // Прикл. биохимия и микробиология. 2018. Т. 54. № 6. С. 637–643.
  5. Самков А.А., Волченко Н.Н., Худокормов А.А., Калашников А.А., Веселовская М.В. // Политематический сетевой электронный научный журн. Кубанского государственного аграрного университета. 2014. № 101. С. 496–510.
  6. Idris M.O., Kim H.-C., Yaqoob A.A., Ibrahim M.N.M. // Sust. Energy Technol. Assess. 2022. V. 52. B. 102183.
  7. Obileke Ke C., Onyeaka H., Meyer E.L., Nwoko N. // Electrochem. Commun. 2021. V. 125. P. 1–14.
  8. Wang X., Hu J., Chen Q., Zhang P., Wu L., Li J. et al. // Water Res. 2019. V. 156. P. 125–135.
  9. Zhi Z., Pan Y.,Lu X., Wang J., Zhen G. // Sci. Total Environ. 2022. V. 814.https://doi.org/10.1016/j.scitotenv.2021.152736
  10. Wang X., Wan G., Shi L., Gao X., Zhang X., Li X., Zhao J., Sha B., Huang Z. // Environ. Sci. Pollut. Res. 2019. V. 26. P. 31449–31462. https://doi.org/10.1007/s11356-019-05670-5
  11. Воейкова Т.А., Емельянова Л.К., Новикова Л.М., Мордкович Н.Н., Шакулов Р.С., Дебабов В.Г. // Микробиология. 2012. Т. 81. № 3. С. 339–344.
  12. Воейкова Т.А., Емельянова Л.К., Новикова Л.М., Шакулов Р.С., Сидорук К.В., Смирнов И.А. и др. // Микробиология. 2013. Т. 82. № 4. С. 402–407.
  13. Хмелевцова Л.Е., Сазыкин И.С., Ажогина Т.Н., Сазыкина М.А. // Прикл. биохимия и микробиология. 2020. Т. 56. № 4. С. 327–335.
  14. Yang C., Zhang J., Zhang B., Liu D., Jia J., Li F., Song H. // Synth. Syst. Biotechnol. 2022. V. 7. P. 918–927.
  15. Hong Y., Guo J., Xu Z., Mo C., Xu M., Sun G. // Appl. Microbiol. Biotechnol. 2007. V. 75. P. 647–654.
  16. Xiao X., Xu C.-C., Wu Y.-M., Cai P.-J., Li W.-W., Du D.-L., Yu H.-Q. // Bioresour. Technol. 2012. V. 110. P. 86–90.
  17. Lizárraga W.C., Mormontoy C.G., Calla H., Castaneda M., Taira M., Garcia R., Marín C., Abanto M., Ramirez P. // Biotechnol. Rep. 2022. V. 33. P. 1–7.
  18. Shi J., Zhao S., Yu X., Zhou T., Khan A., Yu Z., Feng P., Wang J., Liu P., LiX. // Int. J. Hydrog. Energy. 2019. V. 44. P. 10091–10101.
  19. Ivanova E.P. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 1773–1788.
  20. Bose S., Hochell M.F. Jr., Gorby Y.A., Kennedy D.W., McCready D.E., Madden A.S., Lower B.H. // Geochim. Cosmochim. Acta. 2009. V. 73. P. 962–976.
  21. Фалина И.В., Самков А.А., Волченко Н.Н. // Наука Кубани. 2017. № 2. С. 4–11.
  22. Berezina N.P., Timofeev S.V., Kononenko // J. Membr. Sci. 2002. V. 209. P. 509–518.
  23. Jadhav G.S., Ghangrekar M.M. // Bioresour. Technol. 2009. V. 100. P. 717–723.
  24. Tian J.-H., Pourcher A.-M., Klingelschmitt F., Le Roux S., Peu P. // J. Microbiol. Methods. 2016. V. 130. P. 148–153.
  25. Самков А.А., Джимак С.С., Барышев М.Г., Волченко Н.Н., Худокормов А.А., Самкова С.М., Карасева Э.В. // Биофизика. 2015. Т. 60. № 1. С. 136–142.
  26. Самков А.А., Волченко Н.Н., Худокормов А.А., Самкова С.М., Карасева Э.В. // Теоретическая и прикладная экология. 2021. № 1. С. 194–202.
  27. Chhabra M., Mishra S., Sreekrishnan T.R. // J. Biotechnol. 2009. V. 143. P. 69–78.
  28. Singh R., Eltis L.D. // Arch. Biochem. Biophys. 2015. V. 574. P. 56–65.
  29. Lončar N., Colpa D.I., Fraaije M.W. // Tetrahedron. 2016. V. 72. P. 7276–7281.
  30. Zhang Y., Ren J., Wang Q., Wang S., Li S., Li H. // Biochem. Eng. J. 2021. V. 168. P. 1–8.
  31. Kalyani D.C., Patil P.S., Jadhav J.P., Govindwar S.P. // Bioresour. Technol. 2008. V. 99. P. 4635–4641.
  32. Sathishkumar P., Balan K. Palvannan T., Kamala–Kannan S., Oh B.-T., Rodríguez–Couto S. // Clean (Weinh). 2013. V. 41. P. 665–672.
  33. Chen C.-H., Chang C.-F., Ho C.-H., Tsai T.-L., Liu S.-M. // Chemosphere. 2008. V. 72. P. 1712–1720.
  34. Емашова Н.А., Котова И.Б., Нетрусов А.И., Калюжный С.В. // Прикл. биохимия и микробиология. 2009. Т. 45. С. 195–201.
  35. Li C., Luo M., Zhou S., He H., Cao J., Luo J., Fang F. // Int. J. Hydrog. Energy. 2020. V. 45. P. 29417–29429.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (140KB)
3.

Download (187KB)
4.

Download (133KB)
5.

Download (72KB)
6.

Download (113KB)

Copyright (c) 2023 А.А. Самков, Ю.А. Чугунова, М.Н. Круглова, Е.В. Моисеева, Н.Н. Волченко, А.А. Худокормов, С.М. Самкова, Э.В. Карасева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies