Endoplasmic Reticulum Stress Inducer Dithiothreitol Affects the Morphology and Motility of Cultured Human Dermal Fibroblasts and Fibrosarcome HT1080 Cell Line

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Some inducers of endoplasmic reticulum (ER) stress can affect the motility of normal and tumor cells. However, it is unknown what mechanisms mediate this effect and whether it is a consequence of ER stress. The aim of our work was to study the effect of the ER stress inducer dithiothreitol (DTT) on morphological features reflecting the locomotor properties of cells, as well as directly on the migratory properties of cultured human dermal fibroblasts and fibrosarcoma HT1080 cells. We have shown that DTT causes disruption of the organization of actin cytoskeleton in both types of cells, which is accompanied by a change in the cell surface and shape of cells, as well as a decrease in their spreading area. In addition, a decrease in the number of focal contacts was observed in dermal fibroblasts. DTT also reduced the motility of dermal fibroblasts and fibrosarcoma cells. To analyze cell motility and determine the moment of its change, we developed a method which showed that the change in the migratory properties of fibrosarcoma cells cultured with DTT began earlier than in dermal fibroblasts. Thus, activation of ER stress by DTT is accompanied by a change in the organization of the actin cytoskeleton and motility in normal and tumor human cells. Consequently, ER stress triggered by various inducers with different mechanisms of action affects the motility of normal and tumor cells, which must be taken into account when developing antitumor drugs that cause cell death through activation of ER stress.

About the authors

E. P. Turishcheva

Lomonosov Moscow State University, Department of Cell Biology and Histology

Author for correspondence.
Email: kitten-caterina@yandex.ru
Russia, 119234, Moscow

G. A. Ashniev

Lomonosov Moscow State University, Department of Cell Biology and Histology

Email: kitten-caterina@yandex.ru
Russia, 119234, Moscow

M. S. Vildanova

Lomonosov Moscow State University, Department of Cell Biology and Histology

Email: kitten-caterina@yandex.ru
Russia, 119234, Moscow

E. A. Smirnova

Lomonosov Moscow State University, Department of Cell Biology and Histology

Email: kitten-caterina@yandex.ru
Russia, 119234, Moscow

References

  1. Турищева Е.П., Вильданова М.С., Онищенко Г.Е. и др. Роль стресса эндоплазматического ретикулума в дифференцировке клеток мезенхимного происхождения // Биохимия. 2022. Т. 87. № 9. С. 1203–1222.
  2. Al-Beltagi S., Preda C.A., Goulding L.V. et al. Thapsigargin is a broad-spectrum inhibitor of major human respiratory viruses: coronavirus, respiratory syncytial virus and influenza A virus // Viruses. 2021. V. 13. № 2. P. 234–252.
  3. Almanza A., Carlesso A., Chintha C. et al. Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications // FEBS. 2019. V. 286. № 2. P. 241–278.
  4. Bachar-Wikstrom E., Manchanda M., Bansal R. et al. Endoplasmic reticulum stress in human chronic wound healing: rescue by 4-phenylbutyrate // Int. Wound J. 2021. V. 18. № 1. P. 49–61.
  5. Belloni D., Veschini L., Foglieni C. et al. Bortezomib induces autophagic death in proliferating human endothelial cells // Exp. cell res. 2010. V. 316. № 6. P. 1010–1018.
  6. Brüning A., Burger P., Vogel M. et al. Bortezomib treatment of ovarian cancer cells mediates endoplasmic reticulum stress, cell cycle arrest, and apoptosis // Invest. new drugs. 2009. V. 27. P. 543–551.
  7. Chang Z., Fu X. Biogenesis of Secretory Proteins in Eukaryotic and Prokaryotic Cells // Encyclopedia of cell biology (second edititon). 2023. V. 1. P. 689–702.
  8. Cleuren Y.T., Boonstra J. Actin: structure, function and disease // Actin: Structure, Functions and Disease, Consuelas VA, Minas DJ (eds.). 2012. P. 61–96.
  9. Corazzari M., Gagliardi M., Fimia G.M. et al. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate // Front. oncol. 2017. V. 7. P. 78–88.
  10. Curran M.P., McKeage K. Bortezomib: a review of its use in patients with multiple myeloma // Drugs. 2009. V. 69. P. 859–888.
  11. Eghiaian F., Rigato A., Scheuring S. Structural, mechanical, and dynamical variability of the actin cortex in living cells // Biophys. J. 2015. V. 108. № 6. P. 1330–1340.
  12. Földi I., Tóth A.M., Szabó Z. et al. Proteome-wide study of endoplasmic reticulum stress induced by thapsigargin in N2a neuroblastoma cells // Neurochem. Int. 2013. V. 62. № 1. P. 58–69.
  13. Gundamaraju R., Vemuri R., Ambati R.R. et al. Tunicamycin via ER stress mediated 6th hour time point aggravates cell migration, cell invasion and cell proliferation in colonic epithelial cells // Advances in Cancer Biology-Metastasis. 2021. V. 2. P. 100007.
  14. Hetz C., Saxena S. ER stress and the unfolded protein response in neurodegeneration // Nat. Rev. Neurol. 2017. V. 13. № 8. P. 477–491.
  15. Jung Y.H., Lim E.J., Heo J. et al. Tunicamycin sensitizes human prostate cells to TRAIL-induced apoptosis by upregulation of TRAIL receptors and downregulation of cIAP2 // Int. J. Oncol. 2012. V. 40. №. 6. P. 1941–1948.
  16. Kohno K., Hiragun A., Mitsui H. et al. Effect of tunicamycin on cell growth and morphology of nontransformed and transformed cell lines // Agric. Biol. Chem. 1979. V. 43. №. 7. P. 1553–1561.
  17. Limia C.M., Sauzay C., Urra H. et al. Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion // Cancers. 2019. V. 11. № 5. P. 631–655.
  18. Liu B., Dan W., Wei Y. et al. β-asarone inhibits the migration, invasion, and EMT of bladder cancer through activating ER stress // Cancer Medicine. 2023. V. 12. P. 13610–13622.
  19. Nami B., Donmez H., Kocak N. Tunicamycin-induced endoplasmic reticulum stress reduces in vitro subpopulation and invasion of CD44+/CD24-phenotype breast cancer stem cells // Exp. Toxicol. Pathol. 2016. V. 68. № 7. P. 419–426.
  20. Oslowski C.M., Urano F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system // Methods Enzymol. 2011. V. 490. P. 71–92.
  21. Ren B., Wang Y., Wang H. et al. Comparative proteomics reveals the neurotoxicity mechanism of ER stressors tunicamycin and dithiothreitol // Neurotoxicology. 2018. V. 68. P. 25–37.
  22. Schwartz M.P., Rogers R.E., Singh S.P. et al. A quantitative comparison of human HT-1080 fibrosarcoma cells and primary human dermal fibroblasts identifies a 3D migration mechanism with properties unique to the transformed phenotype // PLoS One. 2013. V. 8. № 12. P. e81689.
  23. Sharma P., Lam V.K., Raub C.B. et al. Tracking Single Cells Motility on Different Substrates // Methods and protocols. 2020. V. 3. № 3. P. 56–69.
  24. Sicari D., Delaunay-Moisan A., Combettes L. et al. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems // FEBS. 2020. V. 287. № 1. P. 27–42.
  25. Sixt M. Cell migration: fibroblasts find a new way to get ahead // J. Cell Biol. 2012. V. 197. № 3. P. 347–349.
  26. Tojkander S., Gateva G., Lappalainen P. Actin stress fibers–assembly, dynamics and biological roles // J. Cell Sci. 2012. V. 125. № 8. P. 1855–1864.
  27. Urra H., Dufey E., Avril T. et al. Endoplasmic reticulum stress and the hallmarks of cancer // Trends Cancer. 2016. V. 2. № 5. P. 252–262.
  28. Weiss K., Racho J., Riemer J. Compartmentalized disulfide bond formation pathways // Redox Chemistry and Biology of Thiols. Academic Press, 2022. P. 321–340.
  29. Wu J., Chen S., Liu H. et al. Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation // J. Exp. Clin. Cancer Res. 2018. V. 37. № 1. P. 1–12.
  30. Wu L., Huang X., Kuang Y. et al. Thapsigargin induces apoptosis in adrenocortical carcinoma by activating endoplasmic reticulum stress and the JNK signaling pathway: an in vitro and in vivo study // Drug Des. Devel. Ther. 2019. V. 13. P. 2787–2798.
  31. Yamazaki D., Kurisu S., Takenawa T. Regulation of cancer cell motility through actin reorganization // Cancer science. 2005. V. 96. № 7. P. 379–386.
  32. Yi N., Chen S.Y., Ma A. et al. Tunicamycin inhibits PDGF-BB-induced proliferation and migration of vascular smooth muscle cells through induction of HO-1 // Anat. Rec. 2012. V. 295. № 9. P. 1462–1472.
  33. Yoo J., Mashalidis E.H., Kuk A.C. et al. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation // Nat. Struct. Mol. Biol. 2018. V. 25. № 3. P. 217–224.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (43KB)
5.

Download (1MB)
6.

Download (1MB)
7.

Download (1MB)
8.

Download (1MB)
9.

Download (1MB)

Copyright (c) 2023 Е.П. Турищева, Г.А. Ашниев, М.С. Вильданова, Е.А. Смирнова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies