Ammonia Synthesis and Decomposition with Ru Supported Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analytical equation for the rate of formation/consumption of nitrogen in the reversible reaction N2 + + 3H2 ↔ 2NH3 was obtained on the base of the analysis of the catalytic properties of 4%Ru–13.6%Cs/Sibunit and 4%Ru–5.4%Ba–7.9%Cs/Sibunit in the processes of ammonia decomposition (105 Pa; 350–470°C) and synthesis ammonia (6×105–5×106 Pa; 400–430°C). This equation allows one to describe correctly the dependence of the chemical reaction rate on the partial pressures of the components of the reaction mixtures for both forward and reverse reactions. The approach used to obtain the kinetic equation is based on the assumption that the adsorption sites on the ruthenium surface are initially filled with hydrogen and then replaced by nitrogen during competitive interaction. The values of the equilibrium constants and apparent activation energies for the synthesis and decomposition of ammonia on the 4%Ru–13.6%Cs/Sibunit and 4%Ru–5.4%Ba–7.9%Cs/Sibunit was found by using the proposed kinetic equation. The data are in good agreement with the ones presented in the literature.

About the authors

D. A. Shlyapin

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: borisovtiger86@mail.ru
Russia, 644040, Omsk

V. A. Borisov

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Author for correspondence.
Email: borisovtiger86@mail.ru
Russia, 644040, Omsk

V. L. Temerev

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: borisovtiger86@mail.ru
Russia, 644040, Omsk

K. N. Iost

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: borisovtiger86@mail.ru
Russia, 644040, Omsk

Z. A. Fedorova

Boreskov Institute of Catalysis

Email: borisovtiger86@mail.ru
Russia, 630090, Novosibirsk

P. V. Snytnikov

Boreskov Institute of Catalysis

Email: borisovtiger86@mail.ru
Russia, 630090, Novosibirsk

References

  1. Boisen A., Dahl S., Nørskov J.K., Christensen C.H. // J. Catal. 2005. V. 230. № 2. P. 309. https://doi.org/10.1016/j.jcat.2004.12.013
  2. Raróg-Pilecka W., Szmigiel D., Kowalczyk Z., Jodzis S., Zielinski J. // J. Catal. 2003. V. 218. № 2. P. 465. https://doi.org/10.1016/S0021-9517(03)00058-7
  3. Petrunin D.A., Borisov V.A., Iost K.N., Temerev V.L., Trenikhin M.V., Gulyaeva T.I., Shlyapin D.A., Tsyrulnikov P.G. // AIP Conf. Proc. 2019. V. 2141. P. 020024. https://doi.org/10.1063/1.5122043
  4. Kitano M., Kanbara S., Inoue Y., Kuganathan N., Sushko P.V., Yokoyama T., Hara M., Hosono H. // Nature Commun. 2015. V. 6. P. 6731. https://doi.org/10.1038/ncomms7731
  5. Hosono H., Kitano M. // Chem. Rev. 2021. V. 121. № 5. P. 3121. https://doi.org/10.1021/acs.chemrev.0c01071
  6. Hayashi F., Toda Y., Kanie Y., Kitano M., Inoue Y., Yokoyama T., Hara M., Hosono H. // Chem. Sci. 2013. V. 4. P. 3124. https://doi.org/10.1039/C3SC50794G
  7. Kulkarni S.R., Realpe N., Yerrayya A., Velisoju V.K., Sayas S., Morlanes N., Cerillo J., Katikaneni S.P., Paglieri S.N., Solami B., Gascon J., Castaño P. // Catal. Sci. Technol. 2023. V. 13. I. 7. P. 2026. https://doi.org/10.1039/D3CY00055A
  8. Yamazaki K., Matsumoto M., Ishikawa M., Sato A. // Appl. Catal. B: Environ. 2023. V. 325. P. 122352. https://doi.org/10.1016/j.apcatb.2022.122352
  9. Kikugawa M., Goto Y., Kobayashi K., Nanba T., Matsumoto H., Imagawa H. // J Catal. 2022. V. 413. P. 934. https://doi.org/10.1016/j.jcat.2022.08.004
  10. Sagel V.N., Rouwenhorst K.H.R., Faria J.A. // Energies. 2022. V. 15. P. 3374. https://doi.org/10.3390/en15093374
  11. Salmon N., Bañares-Alcántara R. // Sustain. Energy Fuels 2021. V. 5. P. 2814. https://doi.org/10.1039/D1SE00345C
  12. Nayak-Luke R.M., Bañares-Alcántara R. // Energy Environ. Sci. 2020. V. 13. P. 2957. https://doi.org/10.1039/D0EE01707H
  13. Rouwenhorst K.H., Van der Ham A.G., Mul G., Kersten S.R. // Renew. Sustain. Energy Rev. 2019. V. 114. P. 109339. https://doi.org/10.1016/j.rser.2019.109339
  14. Ufa R.A., Malkova Y.Y., Rudnik V.E., Andreev M.V., Borisov V.A. // Int. J. Hydrogen Energy. 2022. V. 47. P. 20347. https://doi.org/10.1016/j.ijhydene.2022.04.142
  15. Reese M., Marquart C., Malmali M., Wagner K., Buchanan E., McCormick A., Cussler E.L. // Ind. Eng. Chem. Res. 2016. V. 55. P. 3742. https://doi.org/10.1021/acs.iecr.5b04909
  16. Wen D., Aziz M. // Appl. Energy. 2022. V. 319. P. 119272. https://doi.org/10.1016/j.apenergy.2022.119272
  17. Темкин М.И., Морозов Н.М., Шапатина Е.Н. // Кинетика и катализ. 1963. № 2. Т. 4. С. 260.
  18. Аветисов А.К., Кучаев В.Л., Шапатина Е.Н., Зыскин А.Г. // Катализ в промышленности. 2008. № 5. С. 11.
  19. Peng P., Chen P., Schiappacasse C., Zhou N., Anderson E., Chen D., Liu J., Cheng Y., Hatzenbeller R., Addy M., Zhang Y., Liu Y., Ruan R. // J. Clean. Prod. 2018. V. 177. P. 597. https://doi.org/10.1016/j.jclepro.2017.12.229
  20. Aika K. // Catal. Today. 2017. V. 286. P. 14. https://doi.org/10.1016/j.cattod.2016.08.012
  21. Javaid R., Nanba T., Matsumoto H. Kinetic Analysis of Ammonia Production on Ru Catalyst Under High Pressure Conditions. / In: CO2 Free Ammonia as an Energy Carrier. Eds. Aika K., Kobayashi H. Singapore: Springer, 2023. https://doi.org/10.1007/978-981-19-4767-4_18
  22. Egawa C., Nishida T., Naito S., Tamaru K. // J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Cond. Phase. 1984. V. 80. № 6. P. 1595. https://doi.org/10.1039/F19848001595
  23. Tsai W., Weinberg W.H. // J. Phys. Chem. 1987. V. 91. № 20. P. 5302. https://doi.org/10.1021/j100304a034
  24. Bradford M.C.J., Fanning P.E., Vannice M.A. // J. Catal. 1997. V. 172. № 2. P. 479. https://doi.org/10.1006/jcat.1997.1877
  25. Sitar R., Shah J., Zhang Z., Wikoff H., Way J.D., Wolden C.A. // J. Memb. Sci. 2022. V. 644. P. 120147. https://doi.org/10.1016/j.memsci.2021.120147
  26. Duan X., Zhou J., Qian G., Li P., Zhou X., Chen D. // Chin. J. Catal. 2010. V. 31. P. 979. https://doi.org/10.1016/S1872-2067(10)60097-6
  27. Lamb K., Hla S.S., Dolan M. // Int. J. Hydrogen Energy. 2019. V. 44. P. 3726. https://doi.org/10.1016/j.ijhydene.2018.12.123
  28. Le T.A., Do Q.C., Kim Y., Kim T.-W., Chae H.-J. // Korean. J. Chem. Eng. 2021. V. 38. P. 1087. https://doi.org/10.1007/s11814-021-0767-7
  29. Tripodi A., Compagnoni M., Bahadori E., Rossetti I. // J. Ind. Eng. Chem. 2018. V. 66. P. 176. https://doi.org/10.1016/j.jiec.2018.05.027
  30. Devkota S., Shin B.-J., Mun J.-H., Kang T.-H., Yoon H.C., Mazari S.A., Moon J.-H. // Fuel. 2023. V. 342. P. 127879. https://doi.org/10.1016/j.fuel.2023.127879
  31. Zheng W., Zhang J., Xu H., Li. W. // Catal. Lett. 2007. V. 119. № 3. P. 311. https://doi.org/10.1007/s10562-007-9237-z
  32. Иост К.Н., Темерев В.Л., Смирнова Н.С., Шляпин Д.А., Борисов В.А., Муромцев И.В., Тренихин М.В., Киреева Т.В., Шилова А.В., Цырульников П.Г. // Журн. прикладной химии. 2017. Т. 90. № 6. С. 731. (Iost K.N., Temerev V.L., Smirnova N.S., Shlyapin D.А., Borisov V.А., Muromtsev I.V., Trenikhin M.V., Kireeva Т.V., Shilova A.V., Tsyrul’nikov P.G. // Russ. J. Appl. Chem. 2017. V. 90. P. 887.) https://doi.org/10.1134/S1070427217060088
  33. Борисов В.А., Иост К.Н., Петрунин Д.А., Темерев В.Л., Муромцев И.В., Арбузов А.Б., Тренихин М.В., Гуляева Т.И., Смирнова Н.С., Шляпин Д.А., Цырульников П.Г. // Кинетика и катализ. 2019. Т. 60. № 3. С. 394. (Borisov V.A., Iost K.N., Petrunin D.A., Temerev V.L., Muromtsev I.V., Arbuzov A.B., Trenikhin M.V., Gulyaeva T.I., Smirnova N.S., Shlyapin D.A., Tsyrulnikov P.G. // Kinet. Catal. 2019. V. 60. P. 372. )https://doi.org/10.1134/S0023158419030029
  34. Борисов В.А., Иост К.Н., Темерев В.Л., Леонтьева Н.Н., Муромцев И.В., Арбузов А.Б., Тренихин М.В., Савельева Г.Г., Смирнова Н.С., Шляпин Д.А. // Кинетика и катализ. 2018. Т. 59. № 2. С. 161. (Borisov V.A., Iost K.N., Temerev V.L., Leont’eva N.N., Muromtsev I.V., Arbuzov A.B., Trenikhin M.V., Savel’eva G.G., Smirnova N.S., Shlyapin D.A. // Kinet. Catal. 2018. V. 59. P. 136.) https://doi.org/10.1134/S0023158418020015
  35. Borisov V.A., Iost K.N., Temerev V.L., Fedotova P.A., Surovikin Y.V., Arbuzov B., Trenikhin V., Shlyapin D.A. // Diam. Relat. Mater. 2020. V. 108. P. 107986. https://doi.org/10.1016/j.diamond.2020.107986
  36. Iost K.N., Borisov V.A., Temerev V.L., Smirnova N.S., Surovikin Y.V., Trenikhin M.V., Arbuzov A.B., Gulyaeva T.I., Shlyapin D.A., Tsyrulnikov P.G., Vedyagin A.A. // React. Kinet. Mech. Catal. 2019. V. 127. P. 85. https://doi.org/10.1007/s11144-019-01555-3
  37. Wu S., Tsang S.C.E. // Trends Chem. 2021. V. 3. P. 660. https://doi.org/10.1016/j.trechm.2021.04.010
  38. Ao R., Lu R., Leng G., Zhu Y., Yan F., Yu Q. // Energies. 2023. V. 16. P. 921. https://doi.org/10.3390/en16020921
  39. Seets D.C., Wheeler M.C., Mullins C.B. // J. Chem. Phys. 1995. V. 103. № 23. P. 10399. https://doi.org/10.1063/1.469878
  40. Dahl S., Törnqvist E., Chorkendorff I. // J. Catal. 2000. V. 192. № 2. P. 381. https://doi.org/10.1006/jcat.2000.2858
  41. Shustorovich E., Bell A.T. // Surf. Sci. Lett. 1991. V. 259. № 3. P. L791. https://doi.org/10.1016/0167-2584(91)90311-E
  42. Zhang T., Zhou R., Zhang S., Zhou R., Ding J., Li F., Hong J., Dou L., Shao T., Murphy A.B., Ostrikov K., Cullen P.J. // Energy Environ. Mater. 2023. V. 6. P. e12344. https://doi.org/10.1002/eem2.12344
  43. Rouwenhorst K.H.R., Kim H.-H., Lefferts L. // ACS Sustain. Chem. Eng. 2019. V. 7. P. 17515. https://doi.org/10.1021/acssuschemeng.9b04997
  44. Fernández C., Bion N., Gaigneaux E.M., Duprez D., Ruiz P. // J. Catal. 2016. V. 344. P. 16. https://doi.org/10.1016/j.jcat.2016.09.013
  45. Hinrichsen O. // Catal. Today. 1999. V. 53. № 2. P. 177. https://doi.org/10.1016/S0920-5861(99)00115-7
  46. Shi H., Jacobi K., Ertl G. // J. Chem. Phys. 1993. V. 99. № 11. P. 9248. https://doi.org/10.1063/1.465541
  47. Dietrich H., Geng P., Jacobi K., Ertl G. // J. Chem. Phys. 1996. V. 104. № 1. P. 375. https://doi.org/10.1063/1.470836
  48. Dahl S., Sehested J., Jacobsen C.J.H., Törnqvist E., Chorkendorff I. // J. Catal. V. 192. P. 391. https://doi.org/10.1006/jcat.2000.2857
  49. Yuan P.-Q., Ma Y.-M., Cheng Z.-M., Zhu Y.-A., Yuan W.-K. // J. Mol. Struct. Theochem. 2007. V. 807. P. 185. https://doi.org/10.1016/j.theochem.2006.12.023
  50. Zhao P., He Y., Cao D.-B., Wen X., Xiang H., Li Y.-W., Wanga J., Jiao H. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 19446. https://doi.org/10.1039/C5CP02486B
  51. Zupanc C., Hornung A., Hinrichsen O., Muhler M. // J. Catal. 2002. V. 209. P. 501. https://doi.org/10.1006/jcat.2002.3647
  52. Шаповалова Л.Б., Закумбаева Г.Д., Габдракипов А.В. // Нефтехимия. 2003. Т. 43. № 3. С. 192.
  53. Антонов А.Ю., Быстрова О.С., Боева О.А., Жаворонкова К.Н. // Успехи в химии и химической технологии. 2007. Т. 21. С. 13.
  54. Антонов А.Ю., Винокурова О.В., Хейн В.Л., Быстрова О.С., Боева О.А., Жаворонкова К.Н. // Успехи в химии и химической технологии. 2008. Т. 22. № 8. С. 66.
  55. Zhang Z., Karakaya C., Kee R.J., Way D., Wolden C.A. // ACS Sustain. Chem. Eng. 2019. V. 7. P. 18038. https://doi.org/10.1021/acssuschemeng.9b04929
  56. Lucentini I., Garcia X., Vendrell X., Llorca J. // Ind. Eng. Chem. Res. 2021. V. 60. № 51. P. 18560. https://doi.org/10.1021/acs.iecr.1c00843
  57. Muhler M., Rosowski F., Hinrichsen O., Hornung A., Ertl G. // Stud. Surf. Sci. Catal. 1996. V. 101. P. 317. https://doi.org/10.1016/S0167-2991(96)80242-4
  58. Aika K., Takano T., Murata S. // J. Catal. 1992. V. 136. № 1. P. 126. https://doi.org/10.1016/0021-9517(92)90112-U
  59. Городецкий В.В. // Кинетика и катализ. 2009. Т. 50. № 2. С. 322. (Gorodetskii V.V. // Kinet. Catal. 2009. V. 50. P. 304.) https://doi.org/10.1134/S0023158409020220
  60. Елохин В.И., Матвеев А.В., Городецкий В.В. // Кинетика и катализ. 2009. Т. 50. № 1. С. 46. (Elokhin V.I., Matveev A.V., Gorodetskii V.V. // Kinet. Catal. 2009. V. 50. P. 40.) https://doi.org/10.1134/S0023158409010066
  61. Elokhin V.I., Matveev A.V., Kovalyov E.V., Gorodetskii V.V. // Chem. Eng. J. 2009. V. 154. P. 94. https://doi.org/10.1016/j.cej.2009.04.046
  62. Gorodetskii V.V., Sametova A.A., Matveev A.V., Tapilin V.M. // Catal. Today. 2009. V. 144. P. 219. https://doi.org/10.1016/j.cattod.2008.12.014
  63. Городецкий В.В., Матвеев А.В., Брылякова А.А. // Кинетика и катализ. 2010. Т. 51. № 6. С. 902. (Gorodetskii V.V., Matveev A.V., Brylyakova A.A. // Kinet. Catal. 2010. V. 51. P. 873.) https://doi.org/10.1134/S0023158410060133
  64. Wittreich G.R., Liu S., Dauenhauer P.J., Vlachos D.G. // Sci. Adv. 2023. V. 8. P. eabl6576. https://doi.org/10.1126/sciadv.abl6576
  65. Ruzankin S.F., Avdeev V.I., Dobrynkin N.M., Zhidomirov G.M., Noskov A.S. // J. Struct. Chem. 2003. V. 44. P. 341. https://doi.org/10.1023/B:JORY.0000009659.26326.cd
  66. Ohmer N. Stability of bulk and surface ruthenium nitrogen and hydrogen structures: A first-principles atomistic thermodynamics study. Diploma Thesis, Carl von Ossietzky Universität, Oldenburg, 2010. https://hdl.handle.net/11858/00-001M-0000-0010-F764-0
  67. Jacobi K., Wang Y., Fan C.Y., Dietrich H. // J. Chem. Phys. 2001. V. 115. P. 4306. https://doi.org/10.1063/1.1390523

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (28KB)
3.

Download (38KB)
4.

Download (1MB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies