Quantum-Chemical Study of C–H Bond Activation in Methane on Ni–Cu Oxide and Sulphide Clusters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Density functional theory (DFT) (PBE) was used for modeling of C–H bond breaking in methane on Ni–Cu clusters enriched in copper as the first stage of catalytic dry reforming of methane. Nanosized clusters NiCu11S6(PH3)8, NiCu11S6, NiCu11O6(PH3)8, NiCu11O6 are considered as catalyst models. The binding energy for methane with clusters was calculated and the activation energy of the \({\text{CH}}_{4}^{*}\)\({\text{CH}}_{3}^{*}\) + H* step was determined. Based on the data obtained, it was found that the NiCu11O6 catalytic system is the most promising for CH4 activation both in kinetic (activation energy is 99 kJ/mol) and thermodynamic (step energy change is –29 kJ/mol) aspects. To assess the stability of the NiCu11O6 cluster towards coke formation, CH adsorption followed by dissociation (CH* → C* + H*) was modeled. The calculated value of the activation energy of this step is rather high, 159 kJ/mol.

About the authors

P. S. Bandurist

Lomonosov Moscow State University, Chemistry Department

Author for correspondence.
Email: banduristpavel@gmail.com
Russia, 119991, Moscow, Leninskiye Gory, 1/3

D. A. Pichugina

Lomonosov Moscow State University, Chemistry Department

Email: banduristpavel@gmail.com
Russia, 119991, Moscow, Leninskiye Gory, 1/3

References

  1. Olivos-Suarez A.I., Szécsényi À., Hensen E.J.M., Ruiz-Martinez J., Pidko E.A., Gascon J. // ACS Catal. 2016. V. 6. P. 2965. https://doi.org/10.1021/acscatal.6b00428
  2. Franz R., Uslamin E.A., Pidko E.A. // Mendeleev Commun. 2021. V. 31. P. 584. https://doi.org/10.1016/j.mencom.2021.09.002
  3. Wang L., Wang F. // Energy Fuels. 2022. V. 36. P. 5594. https://doi.org/10.1021/acs.energyfuels.2c01007
  4. Wittich K., Krämer M., Bottke N., Schunk S.A. // ChemCatChem. 2020. V. 12. P. 2130. https://doi.org/10.1002/cctc.201902142
  5. de Medeiros F.G.M., Lopes F.W.B., de Vasconcelos B.R. // Catalysts. 2022. V. 12. P. 363. https://doi.org/10.3390/catal12040363
  6. le Saché E., Reina T.R. // Prog. Energy Combust. Sci. 2022. V. 89. P. 100970. https://doi.org/10.1016/j.pecs.2021.100970
  7. Zhang G., Liu J., Xu Y., Sun Y. // Int. J. Hydrog. Energy. 2018. V. 43. P. 15030. https://doi.org/10.1016/j.ijhydene.2018.06.091
  8. Parsapur R.K., Chatterjee S., Huang K.-W. // ACS Energy Lett. 2020. V. 5. P. 2881. https://doi.org/10.1021/acsenergylett.0c01635
  9. Садыков В.А., Симонов М.Н., Беспалко Ю.Н., Боброва Л.Н., Еремеев Н.Ф., Арапова М.В., Смаль Е.А., Мезенцева Н.В., Павлова С.Н. // Кинетика и катализ. 2019. Т. 60. № 5. С. 588. (Sadykov V.A., Simonov M.N., Bespalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal’ E.A., Mesentseva N.V., Pavlova S.N. // Kinet. Catal. 2019. V. 60. № 5. P. 582. https://doi.org/10.1134/S002315841905008210.1134/S0023158419050082)https://doi.org/10.1134/S0453881119050095
  10. Song Y., Ozdemir E., Ramesh S., Adishev A., Subramanian S., Harale A., Albuali M., Fadhel B.A., Jamal A., Moon D., Choi S.H., Yavuz C.T. // Science. V. 367. 2020. P. 777. https://doi.org/10.1126/science.aav2412
  11. Le Saché E., Pastor-Perez L., Watson D., Sepulveda-Escribano A., Reina T.R. // Appl. Catal. B: Env. 2018. V. 236. P. 458. https://doi.org/10.1016/j.apcatb.2018.05.051
  12. Волнина Э.А., Кипнис М.А. // Кинетика и катализ. 2020. Т. 61. № 1. С. 107. https://doi.org/ (Volnina E.A., Kipnis M.A. // Kinet. Catal. 2020. V. 61. № 1. P. 119. https://doi.org/10.1134/S002315842001011510.1134/S0023158420010115)https://doi.org/10.31857/S045388112001013X
  13. Álvarez A., Bansode A., Urakawa A., Bavykina A.V., Wezendonk T.A., Makkee M., Gascon J., Kapteijn F. // Chem. Rev. 2017. V. 117. P. 9804. https://doi.org/10.1021/acs.chemrev.6b00816
  14. Mahmoudi H., Mahmoudi M., Doustdar O., Jahangiri H., Tsolakis A., Gu S., Wyszynski M.L. // Biofuels Eng. 2017. V. 2. P. 11. https://doi.org/10.1515/bfuel-2017-0002
  15. Pakhare D., Spivey J. // Chem. Soc. Rev. 2014. V. 43. P. 7813. https://doi.org/10.1039/C3CS60395D
  16. Rezaei M., Alavi S.M., Sahebdelfar S., Yan Z.F. // J. Nat. Gas. Chem. 2006. V. 15. P. 327. https://doi.org/10.1016/S1003-9953(07)60014-0
  17. Barama S., Dupeyrat-Batiot C., Capron M., Bordes-Richard E., Bakhti-Mohammedi O. // Catal. Today. 2009. V. 141. P. 385. https://doi.org/10.1016/j.cattod.2008.06.025
  18. Ferreira-Aparicio P., Guerrero-Ruiz A., Rodriquez-Ramos I. // Appl. Catal. A: Gen. 1998. V. 170. P. 177. https://doi.org/10.1016/S0926-860X(98)00048-9
  19. Hou Z., Chen P., Fang H., Zheng X., Yashima T. // Int. J. Hydrog. Energy. 2006. V. 31. P. 555. https://doi.org/10.1016/j.ijhydene.2005.06.010
  20. Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N. // Renew. Sustain. Energy Rev. 2018. V. 82. P. 2570. https://doi.org/10.1016/j.rser.2017.09.076
  21. Abdulrasheed A., Jalil A.A., Gambo Y., Ibrahim M., Hambali H.U., Shahul Hamid M.Y. // Renew. Sustain. Energy Rev. 2019. V. 108. P. 175. https://doi.org/10.1016/j.rser.2019.03.054
  22. Goula M.A., Charisiou N.D., Siakavelas G., Tzounis L., Tsiaoussis I., Panagiotopoulou P., Goula G., Yentekakis I.V. // Int. J. Hydrog. Energy. 2017. V. 42. P. 13724. https://doi.org/10.1016/j.ijhydene.2016.11.196
  23. Zhang W.D., Liu B.S., Tian Y.L. // Catal. Comm. 2007. V. 8. P. 661. https://doi.org/10.1016/j.catcom.2006.08.020
  24. Yu X., Zhang F., Chu W. // RSC Adv. 2016 V. 6. P. 70 537. https://doi.org/10.1039/C6RA12335J
  25. le Saché E., Johnson S., Pastor-Perez L., Horri B.A., Reina T.R. // Energies. 2019. V. 12. P. 1007. https://doi.org/10.3390/en12061007
  26. Song Z., Wang Q., Guo C., Li S., Yan W., Jiao W., Qiu L., Yan X., Li R. // Ind. Eng. Chem. Res. 2020. V. 59. P. 17 250. https://doi.org/10.1021/acs.iecr.0c01204
  27. Crisafulli C., Scirè S., Maggiore R., Minicò S., Galvagno S. // Catal. Let. 1999. V. 59. P. 21. https://doi.org/10.1023/A:1019031412713
  28. García-Diéguez M., Pieta I.S., Herrera M.C., Larrubia M.A., Alemany L.J. // Catal. Today. 2011. V. 172. P. 136. https://doi.org/10.1016/j.cattod.2011.02.012
  29. Mahoney E.G., Pusel J.M., Stagg-Williams S.M., Faraji S. // J. CO2 Util. 2014. V. 6. P. 40. https://doi.org/10.1016/j.jcou.2014.01.003
  30. Huang T., Huang W., Huang J., Ji P. // Fuel Process. Technol. 2011. V. 92. P. 1868. https://doi.org/10.1016/j.fuproc.2011.05.002
  31. Chatla A., Ghouri M.M., El Hassan O.W., Mohamed N., Prakash A.V., Elbashir N.O. // Appl. Catal. A: Gen. 2020. V. 602. P. 117699. https://doi.org/10.1016/j.apcata.2020.117699
  32. Franz R., Pinto D., Uslamin E.A., Urakawa A., Pidko E.A. // ChemCatChem. 2021. V. 13. P. 5034. https://doi.org/10.1002/cctc.202101080
  33. Franz R., Kühlewind T., Shterk G., Abou-Hamad E., Parastaev A., Uslamin E., Hensen E.J.M., Kapteijn F., Gascon J., Pidko E.A. // Catal. Sci. Technol. 2020. V. 10. P. 3965. https://doi.org/10.1039/D0CY00817F
  34. Zhang X., Vajglova Z., Mäki-Arvela P., Peurla M., Palonen H., Murzin D.Yu., Tungatarova S.A., Baizhumanova T.S., Aubakirov Y.A. // ChemistrySelect. 2021. V. 6. P. 3424. https://doi.org/10.1002/slct.202100686
  35. Gawande M.B., Goswami A., Felpin F.-X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. // Chem. Rev. 2016. V. 116. P. 3722. https://doi.org/10.1021/acs.chemrev.5b00482
  36. Wang M., Fu Z., Yang Z. // Phys. Lett. A. 2013. V. 377. P. 2189. https://doi.org/10.1016/j.physleta.2013.05.054
  37. An W., Zeng X.C., Turner C.H. // J. Chem. Phys. 2009. V. 131. P. 174702. https://doi.org/10.1063/1.3254383
  38. Omran A., Yoon S.H., Khan M., Ghouri M., Chatla A., Elbashir N. // Catalysts. 2020. V. 10. P. 1043. https://doi.org/10.3390/catal10091043
  39. Qiu H., Ran J., Niu J., Guo F., Ou Z. // Mol. Catal. 2021. V. 502. P. 111360. https://doi.org/10.1016/j.mcat.2020.111360
  40. Liu H., Zhang R., Yan R., Li J., Wang B., Xie K. // Appl. Surf. Sci. 2012. V. 258. P. 8177. https://doi.org/10.1016/j.apsusc.2012.05.017
  41. Zhang R., Guo X., Wang B., Ling L. // J. Phys. Chem. C. 2015. V. 119. P. 14135. https://doi.org/10.1021/acs.jpcc.5b03868
  42. Xiao Z., Hou F., Zhang J., Zheng Q., Xu J., Pan L., Wang L., Zou J., Zhang X., Li G. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 48838. https://doi.org/10.1021/acsami.1c14918
  43. Lee J.-H., Lee E.-G., Joo O.-S., Jung K.-D. // Appl. Catal. A: Gen. 2004. V. 269. P. 1. https://doi.org/10.1016/j.apcata.2004.01.035
  44. Chen H.-W., Wang C.-Y., Yu C.-H., Tseng L.-T., Liao P.-H. // Catal. Today. 2004. V. 97. P. 173. https://doi.org/10.1016/j.cattod.2004.03.067
  45. Wu T., Cai W., Zhang P., Song X., Gao L. // RSC Adv. 2013. V. 3. P. 23976. https://doi.org/10.1039/c3ra43203c
  46. Li B., Xu Z., Jing F., Luo S., Wang N., Chu W. // J. Energy Chem. 2016. V. 25. P. 1078. https://doi.org/10.1016/j.jechem.2016.11.001
  47. Nataj S.M.M, Alavi S.M., Mazloom G. // J. Energy Chem. 2018. V. 27. P. 1475. https://doi.org/10.1016/j.jechem.2017.10.002
  48. Song K., Lu M., Xu S., Chen C., Zhan Y., Li D., Au C., Jiang L., Tomishige K. // Appl. Catal. B: Env. 2018. V. 239. P. 324. https://doi.org/10.1016/j.apcatb.2018.08.023
  49. Rezaei R., Moradi G., Sharifnia S. // Energy Fuels. 2019. V. 33. P. 6689. https://doi.org/10.1021/acs.energyfuels.9b00692
  50. Yang Y., Lin Y.-A., Yan X., Chen F., Shen Q., Zhang L., Yan N. // ACS Appl. Energy Mater. 2019. V. 2. P. 8894. https://doi.org/10.1021/acsaem.9b01923
  51. Han K., Wang S., Liu Q., Wang F. // ACS Appl. Nano Mater. 2021. V. 4. P. 5340. https://doi.org/10.1021/acsanm.1c00673
  52. Han K., Wang S., Hu N., Shi W., Wang F. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 23487. https://doi.org/10.1021/acsami.2c03757
  53. Rahemi N., Haghighi M., Babaluo A.A., Allahyari S., Jafari M.F. // Energy Convers. Manag. 2014. V. 84. P. 50. https://doi.org/10.1016/j.enconman.2014.04.016
  54. Wu T., Zhang Q., Cai W., Zhang P., Song X., Sun Z., Gao L. // Appl. Catal. A: Gen. 2015. V. 503. P. 94. https://doi.org/10.1016/j.apcata.2015.07.012
  55. Bian Z., Das S., Wai M.H., Hongmanorom P., Kawi S. // ChemPhysChem. 2017. V. 18. P. 3117. https://doi.org/10.1002/cphc.201700529
  56. Kolganov A.A., Gabrienko A.A., Chernyshov I.Yu., Stepanov A.G. Pidko E.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 6492. https://doi.org/10.1039/D1CP05854A
  57. Dehnen S., Schläfer A., Fenske D., Ahlrichs R. // Angew. Chem. 1994. V. 106. P. 786. https://doi.org/10.1002/ange.19941060713
  58. Dehnen S., Fenske D., Deveson A.C. // J. Clust. Sci. 1996. V. 7. P. 351. https://doi.org/10.1007/BF01171188
  59. Пичугина Д.А., Кузьменко Н.Е., Шестаков А.Ф. // Успехи химии. 2015. Т. 84. С. 1114. (Pichugina D.A., Kuz’menko N.E., Shestakov A.F. // Russ. Chem. Rev. 2015. V. 84. P. 1114. )https://doi.org/10.1070/RCR4493
  60. Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
  61. Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
  62. Schlegel H.B. // J. Comput. Chem. 1982. V. 3. P. 214. https://doi.org/10.1002/jcc.540030212
  63. Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. хим. 2005. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. № 3. P. 820.)
  64. Chen T., Fang L., Luo W., Meng Y., Xue J., Xia S., Ni Z. // Chem. J. Chin. Univ. 2019. V. 40. P. 2135. https://doi.org/10.7503/cjcu20190267
  65. Zhang L., Meng Y., Yang J., Shen H., Yang C., Xie B., Xia S. // Fuel. 2021. V. 303. P. 121263. https://doi.org/10.1016/j.fuel.2021.121263

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (845KB)
3.

Download (359KB)
4.

Download (532KB)
5.

Download (343KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies