Properties of Li1.3Al0.3Ti1.7(PO4)3 Lithium-Conducting Ceramics Synthesized by Spark Plasma Sintering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Results on the synthesis of lithium-conducting ceramics Li1.3Al0.3Ti1.7(PO4)3 by the method of spark plasma sintering (SPS) are presented. In the first stage, the monophase Li1.3Al0.3Ti1.7(PO4)3 solid-electrolyte powder is synthesized from the nitrate-peroxide precursor. Its subsequent consolidation by the SPS method provides the formation of ceramics with the high Li-ionic conductivity and the density on the level of 97–98%. The microstructure and the electrochemical properties of the Li1.3Al0.3Ti1.7(PO4)3 ceramics are studied.

About the authors

G. B. Kunshina

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences

Email: g.kunshina@ksc.ru
Apatity, Russia

O. O. Shichalin

Far Earsten Federal University

Email: g.kunshina@ksc.ru
Vladivostok, Russia

A. A. Belov

Far Earsten Federal University

Email: g.kunshina@ksc.ru
Vladivostok, Russia

E. K. Papynov

Far Earsten Federal University

Email: g.kunshina@ksc.ru
Vladivostok, Russia

I, V. Bocharova

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences

Email: g.kunshina@ksc.ru
Apatity, Russia

O. B. Shcherbina

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Kola Science Center, Russian Academy of Sciences

Author for correspondence.
Email: g.kunshina@ksc.ru
Apatity, Russia

References

  1. Yang, S., Zhang, F., Ding, H., He, P., and Zhou, H., Lithium Metal Extraction from Seawater, Joule, 2018, vol. 2, p. 1648.
  2. Xie, N., Li, D., Li, Y., Gong, J., and Hu, X., Solar-assisted lithium metal recovery from spent lithium iron phosphate batteries, Chem. Eng. J. Adv., 2021, vol. 8, 100163. https://doi.org/10.1016/j.ceja.2021.100163
  3. Yen, P-Y., Lee, M-L., Gregory, D. H., and Liu, W-R., Optimization of sintering process on Li1 + xAlxTi2 – x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2020, vol. 46, p. 20529.
  4. Lee, S.-D., Jung, K.-N., Kim, H., Shin, H.-S., Song, S.-W., Park, M.-S., and Lee, J.-W., Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement, ChemSusChem., 2017, vol. 10, p. 2175. https://doi.org/10.1002/cssc.201700104
  5. Kwatek, K., Ślubowska, W., Trébosc, J., Lafon, O., and Nowiński, J.L., Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF, J. Eur. Ceram. Soc., 2020, vol. 40, p. 85.
  6. Папынов, Е.К., Шичалин, О.О., Майоров, В.Ю., Модин, Е.Б., Портнягин, А.С., Ткаченко, И.А., Белов, А.А., Гридасова, Е.А., Тананаев, И.Г., Авраменко, В.А. Искровое плазменное спекание как высокотехнологичный подход для синтеза наноструктурированных функциональных керамик нового поколения. Рос. нанотехнологии. 2017. Т. 12. № 1–2. С. 38. [Papynov, E.K., Shichalin, O.O., Mayo-rov, V.Y., Modin, E.B., Portnyagin, A.S., Tkachenko, I.A., Belov, A.A., Gridasova, E.A., Tananaev, I.G., and Avramenko, V.A., Spark Plasma Sintering as a High-Tech Approach in a New Generation of Synthesis of Nanostructured Functional Ceramics, Nanotechnol. Russ., 2017, vol. 12, no. 1–2, p. 49.]
  7. Папынов, Е.К., Шичалин, О.О., Майоров, В.Ю., Ткаченко, И.А., Голуб, А.В., Тананаев, И.Г., Авраменко, В.А. Технология искрового плазменного спекания как перспективное решение для создания функциональных наноструктурированных керамик. Вестник ДВО РАН. 2016. № 6. С. 15.
  8. Папынов, Е.К., Шичалин, О.О., Буравлев, И.Ю., Портнягин, А.С., Белов, А.А., Майоров, В.Ю., Скурихина, Ю.Е., Меркулов, Е.Б., Главинская, В.О., Номеровский, А.Д., Голуб, А.В., Шапкин, Н.П. Реакционный искровой плазменный синтез пористого биокерамического волластонита. Журн. неорган. химии. 2020. Т. 65. № 2. С. 261. [Papynov, E.K., Shichalin, O.O., Buravlev, I.Yu., Portnyagin, A.S., Belov, A.A., Maiorov, V.Yu., Skurikhina, Yu.E., Merkulov, E.B., Glavinskaya, V.O., Nomerovskii, A.D., Golub, A.V., and Shapkin, N.P., Reactive Spark Plasma Synthesis of Porous Bioceramic Wollastonite, Russ. J. Inorg. Chem., 2020, vol. 65, no. 2, p. 263. https://doi.org/10.1134/S0036023620020138]10.1134/S0036023620020138]https://doi.org/10.31857/S0044457X20020130
  9. Delaizir, G., Viallet, V., Aboulaich, A., Bouchet, R., Tortet, L., Seznec, V., Morcrette, M., Tarascon, J.-M., Rozier, P., and Dollé, M., The Stone Age Revisited: Building a Monolithic Inorganic Lithium-Ion Battery, Adv. Funct. Mater., 2012, vol. 22, p. 2140. https://doi.org/10.1002/adfm.201102479
  10. Tong, H., Liu, J., Qiao, Y., and Song, X., Characteristics of interface between solid electrolyte and electrode in all-solid-state batteries prepared by spark plasma sintering, J. Power Sources, 2022, vol. 521, 230964.
  11. Perez-Estebanez, M., Isasi-Marín, J., Rivera-Calzada, A., Leon, C., and Nygren, M., Spark plasma versus conventional sintering in the electrical properties of NASICON-type materials, J. Alloys Compd., 2015, vol. 651, p. 636.
  12. Xu, X., Wen, Z., Yang, X., and Chen, L., Dense nanostructured solid electrolyte with high Li-ion conductivity by spark plasma sintering technique, Mater. Res. Bull., 2008, vol. 43, p. 2334.
  13. Waetzig, K., Rost, A., Heubner, C., Coeler, M., Nikolowski, K., Wolter, M., and Schilm, J., Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity, J. Alloys Compd., 2020, vol. 818, 153237.
  14. Kali, R. and Mukhopadhyay, A., Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective, J. Power Sources, 2014, vol. 247, p. 920.
  15. Куншина, Г.Б., Ефремов, В.В., Локшин, Э.П. Микроструктура и ионная проводимость титанофосфата лития-алюминия. Электрохимия. 2013. Т. 49. С. 808. [Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Microstructure and Ionic Conductivity of Lithium-Aluminum Titanophosphate, Russ. J. Electrochem., 2013, vol. 49, p. 725.]
  16. Куншина, Г.Б., Щербина, О.Б., Бочарова, И.В. Проводимость и механические свойства керамических литийпроводящих твердых электролитов со структурой NASICON. Электрохимия. 2021. Т. 57. С. 554. [Kunshina, G.B., Shcherbina, O.B., and Bocharova, I.V., Conductivity and Mechanical Properties of Lithium-Conducting Ceramic Solid Electrolytes with the NASICON Structure, Russ. J. Electrochem., 2021, vol. 57, p. 953.]https://doi.org/10.31857/S0424857021080077
  17. He, S. and Xu, Y., Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1 + xAlxTi2 – x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content, Solid State Ionics, 2019, vol. 343, p. 115078.
  18. Huang, Y., Jiang, Y., Zhou, Y., Hu, Z., and Zhu, X., Influence of Liquid Solutions on the Ionic Conductivity of Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolytes, ChemElectroChem., 2019, vol. 6, p. 6016.
  19. Kotobuki, M. and Koishi, M., Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources, Ceram. Int., 2013, vol. 39, p. 4645.
  20. Ma, Q., Xu, Q., Tsai, C.-L., Tietz, F., and Guillon, O., A Novel Sol-Gel Method for Large-Scale Production of Nanopowders: Preparation of Li1.5Al0.5Ti1.5(PO4)3 as an Example, J. Amer. Ceram. Soc., 2016, vol. 99, issue 2, p. 410.
  21. Rossbach, A. and Neitzel-Grieshammer, S., Preparation, characterization and conductivity of NASICON-type (M(III) = Al, Cr, Fe; 0.5 ≤ x ≤ 2.0) materials via modern, scalable synthesis routes, Open Ceramics, 2022, vol. 9, 100231. https://doi.org/10.1016/j.oceram.2022.10023110.1016/j.oceram.2022.100231
  22. Jackman, S.D. and Cutler, R.A., Effect of microcracking on ionic conductivity in LATP, J. Power Sources, 2012, vol. 218, p. 65. https://doi.org/10.1016/j.jpowsour.2012.06.081
  23. Waetzig, K., Rost, A., Langklotz, U., Matthey, B., and Schilm, J., An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics, J. Eur. Ceram. Soc., 2016, vol. 36, p. 1995.
  24. Wolfenstine, J., Allen, J.L., Sumner, J., and Sakamoto, J., Electrical and mechanical properties of hot-pressed versus sintered LiTi2(PO4)3, Solid State Ionics, 2009, vol. 180, p. 961.
  25. Narváez-Semanate, J.L. and Rodrigues, A.C.M., Microstructure and ionic conductivity of Li1 + xAlxTi2 – x(PO4)3 NASICON glass-ceramics, Solid State Ionics, 2010, vol. 181, p. 1197. https://doi.org/10.1016/j.ssi.2010.05.010
  26. Krasnikova, I.V., Pogosova, M.A., Sanin, A.O., and Stevenson, K.J., Methods & Protocols: Towards Standardization of Electrochemical Impedance Spectroscopy Studies of Li-Ion Conductive Ceramics, Chem. Mater., 2020, vol. 32, p. 2232. https://doi.org/10.1021/acs.chemmater.9b04899
  27. Xu, X., Wen, Z., Wu, X., Yang, X., and Gu, Z., Lithium Ion-Conducting Glass-Ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x = 0.0–0.20) with Good Electrical and Electrochemical Properties, J. Amer. Ceram. Soc., 2007, vol. 90, no.9, p. 2802. https://doi.org/10.1111/j.1551-2916.2007.01827.x
  28. Ren, Y., Deng, H., Zhao, H., Zhou, Z., and Wei, Z., A simple and effective method to prepare dense Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte for lithium-oxygen batteries, Ionics, 2020, vol. 26, p. 6049. https://doi.org/10.1007/s11581-020-03781-5
  29. Свитанько, А.И., Новикова, С.А., Стенина, И.А., Скопец, В.А., Ярославцев, А.Б. Микроструктура и ионный перенос в материалах Li1 + xTi2 – xMx(PO4)3 (M – Cr, Fe, Al) со структурой NASICON. Неорган. материалы. 2014. Т. 50. № 3. С. 295. [Svitan’Ko, A.I., Novikova, S.A., Stenina, I.A., Skopets, V.A., and Yaroslavtsev, A.B., Microstructure and ion transport in Li1 + xTi2 – xMx(PO4)3 (M = Cr, Fe, Al) NASICON-type materials, Inorg. Mater., 2014, vol. 50, no. 3, p. 273.]
  30. Куншина, Г.Б., Бочарова, И.В., Иваненко, В.И. Влияние режимов термообработки на ионпроводящие свойства титанофосфата лития-алюминия. Журн. прикл. химии. 2017. Т. 90. Вып. 3. С. 312. [Kunshina, G.B., Bocharova, I.V., and Ivanenko, V.I., Effect of Thermal Treatment Modes on Ion-Conducting Properties of Lithium-Aluminum Titanophosphate, Russ. J. Appl. Chem., 2017, vol. 90, no. 3, p. 374.]
  31. Cretin, M. and Fabry, P., Comparative Study of Lithium Ion Conductors in the System with AIV = Ti or Ge and 0 ≤ x ≤ 0.7 for Use as Li+ Sensitive Membranes, J. Eur. Ceram. Soc., 1999, vol. 19, p. 2931.
  32. Irvin, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, p. 132.
  33. Yang, G. and Park, S.-J., The formation mechanism of Li4Ti5O12 – y solid solutions prepared by carbothermal reduction and the effect of Ti3+ on electrochemical performance, Sci. Rep., 2019, vol. 9, 4774. https://doi.org/10.1038/s41598-019-41206-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (389KB)
4.

Download (149KB)
5.

Download (1MB)
6.

Download (176KB)
7.

Download (3MB)
8.

Download (42KB)

Copyright (c) 2023 Г.Б. Куншина, О.О. Шичалин, А.А. Белов, Е.К Папынов, И.В. Бочарова, О.Б. Щербина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies