Nanosized Complex of Metal–Ion-Exchanger Composites in the Oxygen Electrochemical Reduction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The role of primary (the particles’ size) and secondary (the particles’ content in the material) size effects of metal–ion-exchanger composites in the oxygen electrochemical reduction is elucidated. To this purpose, metal–ion-exchanger particulate composites with different grain size and the metal (Cu) particles’ content are prepared as spherical grains, based on macroporous sulfonic cation-exchange matrix (Lewatit K 2620). X-ray diffraction analysis showed the deposited metal basic particles to be nanosized. A special feature of the metal particles is that during the repeated cycles of their chemical deposition into the ion-exchange matrix pores both the capacity ε, and the particles’ radius r0 increased. On this reason, the primary and secondary size effects appeared being interconnected in a common nanosized complex f=ε/r0. With the increasing of the capacity the complex increased up to certain limiting value, which is connected with percolation transition from separate metal clusters to collective associates. Correspondingly, the reduced oxygen specific amount also reached its constant value. The oxygen electroreduction process reached quasi-steady-state regime.

About the authors

T. A. Kravchenko

Voronezh State University

Email: krav280937@yandex.ru
Voronezh, 394018 Russia

V. A. Krysanov

Voronezh State University

Email: krav280937@yandex.ru
Voronezh, 394018 Russia

I. A. Golovin

Voronezh State University

Author for correspondence.
Email: krav280937@yandex.ru
Voronezh, 394018 Russia

References

  1. Farzad, E., Nanocomposites: new trends and developments, Books on Demand, 2016. 503 p.
  2. Shahinpoor, M., Ionic Polymer Metal Composites (IPMCs). Smart Multi-Functional Materials and Artificial Muscles, Royal Society of Chemistry, 2016. 429 p.
  3. Хорольская, С.В., Полянский, Л.Н., Кравченко, Т.А., Конев, Д.В. Кооперативные взаимодействия наночастиц металла в ионообменной матрице с растворенным в воде кислородом. Журн. физ. химии. 2014. Т. 88. № 6. С.1002. [Khorolskaya, S.V., Polyanskii, L.N., Kravchenko, T.A., and Konev, D.V., Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water, Russ. J. Phys. Сhem. A., 2014, vol. 88, no. 6, p.1000.]
  4. Кравченко, Т.А., Золотухина, Е.В., Чайка, М.Ю., Ярославцев, А.Б. Электрохимия нанокомпозитов металл–ионообменник, М.: Наука, 2013. 361 с. [Kravchenko, T.A., Zolotukhina, E.V., Chaika, M.Yu., and Yaroslavtsev, A.B. Electrochemistry of nanocomposites metal–ion exchanger (in Russian), Moscow: Nauka, 2013. 361 p.]
  5. Кравченко, Т.А., Полянский, Л.Н., Калиничев, А.И., Конев, Д.В. Нанокомпозиты металл–ионообменник, М.: Наука, 2009. 391 с. [Kravchenko, T.A., Polyansky, L.N., Kalinichev, A.I., and Konev, D.V. Nanocomposites metal–ion exchanger (in Russian), Moscow: Nauka, 2009. 391 p.]
  6. Kravchenko, T.A., Khorolskaya, S.V., Polyanskiy, L.N., and Kipriyanova, E.S., Investigation of the mass transfer process in metal – ion exchanger, In book Nanocomposites: Synthesis, Characterization and Application, Ed. Wang, X. N.Y.: Nova Science Publishers, 2013. p. 329–348.
  7. Volkov, V.V, Kravchenko, T.A, and Roldughin, V.I., Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen, Russ. Chem. Rev., 2013, vol. 82, no. 5, p. 465.
  8. Новикова, С.А., Ярославцев, А.Б. Синтез и транспортные свойства мембранных материалов с металлическими частицами меди и серебра. Сорбционные и хроматографические процессы. 2008. Т. 8. № 6. С. 887. [Novikova, S.A. and Yaroslavtsev, A.B., Synthesis and transport properties of membrane materials with metal particles of copper and silver, Sorption and chromatographic processes, 2008, vol. 8, no. 6, p. 887.]
  9. Сергеев, Г.Б. Нанохимия. М.: МГУ, 2007. 336 с. [Sergeev, G.B., Nanochemistry(in Russian), Moscow: MSU, 2007. 336 p.]
  10. Ростовщикова, Т.Н., Смирнов, В.В., Кожевин, В.М., Явсин, Д.А., Гуревич, С.А. Межкластерные взаимодействия в катализе наноразмерными частицами. Рос. нанотехнологии. 2007. Т. 2. № 1–2. С. 47. [Rostovshchikova, T.N., Smirnov, V.V., Kozhevin, V.M., Yavsin, D.A., and Gurevich, S.A., Intercluster interactions in catalysis by nanoscale particles, Russ. nanotechnology (in Russian), 2007, vol. 2, nos. 1–2, p. 47.]
  11. Трипачев, О.В., Тарасевич, М.Р. Размерный эффект в электровосстановлении кислорода на золоте в широком диапазоне pH. Журн. физ. химии. 2013. Т. 87. С. 835. [Tripachev, O.V. and Tarasevich, M.R., Dimensional effect in electroconduction of oxygen on gold in a wide pH range, Russ. J. Phys. Chem. A, 2013, vol. 87, p. 820.]
  12. Erikson, H., Lusi, M., Sarapuu, A., Tammeveski, K., Solla-Gullon, J., and Feliu, J.M., Oxygen electroreduction on carbon-supported Pd nanotubts in acid solutions, Electrochim. Acta, 2016, vol. 188, p.301.
  13. Lu, Y. and Chen, W., Size effect of silver nanoclastes on their catalytic activity for oxygen electro-reduction, J. Power Sources, 2012, vol. 107, p. 107.
  14. Cuenya, B.R. and Behafarid, F., Nanocatalysis: size- and shape-dependent chemisorption and catalytic reactivity, Surface Sci. Reports, 2015, vol. 70, p. 135.
  15. Sarkar, S., Guibal, E., Quignard, F., and Sen Gupta, A.K., Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications, J. Nanopart. Res., 2012, vol. 14, p. 715.
  16. Selvaraju, T. and Ramaraj, R., Nanostructured copper particles-incorporated Nafion-modified electrode for oxygen reduction, J. Phys., 2005, vol. 65, no. 4, p. 713.
  17. Горшков, В.С., Захаров, П.Н., Полянский, Л.Н., Чайка, М.Ю., Кравченко, Т.А., Крысанов В.А. Композиты ионообменной мембраны МФ-4СК с наночастицами металлов и активным углем Norit 30 в реакции электровосстановления кислорода. Сорбционные и хроматографические процессы. 2014. Т. 14. № 4. С. 601. [Gorshkov, V.S., Zakharov, P.N., Polyansky, L.N., Chaika, M.Yu., Kravchenko, T.A., and Krysanov, V.A., Composites of the MF-4SK ion exchange membrane with metal nanoparticles and Norit 30 activated carbon in the reaction of oxygen electroconduction, Sorption and chromatographic processes (in Russian), 2014, vol. 14, no. 4, p. 601.]
  18. Фертикова, Т.Е., Фертиков, С.В., Исаева, Е.М., Крысанов, В.А. Кравченко, Т.А. Новые нанокомпозиты для глубокой деоксигенации воды. Конденсированные среды и межфазные границы. 2021. Т. 23. № 43. С. 614. [Fertikova, T.E., Fertikov, S.V., Isaeva, E.M., Krysanov, V.A., and Kravchenko, T.A., New nanocomposites for deep deoxygenation of water, Condensed Matter and Interphases (in Russian), 2021, vol.23, no. 43. p. 614.]
  19. Кравченко, Т.А., Шевцова, Е.А., Крысанов, В.А. Наноразмерные эффекты металл-ионообменных композитов в электрохимическом восстановлении растворенного в воде кислорода. Сорбционные и хроматографические процессы. 2021. Т. 21. № 5. С.630. [Kravchenko, T.A., Shevtsova, E.A., and Krysanov, V.A., Nanoscale effects of metal-ion-exchange composites in electrochemical reduction of oxygen dissolved in water, Sorption and chromatographic processes, 2021, vol. 21, no. 5, p. 630.]
  20. Кравченко, Т.А., Вахнин, Д.Д., Придорогина, В.Е., Шафрова, М.Ф. Электрохимическая активность металл-ионообменных нанокомпозитов. Электрохимия. 2019. Т. 55. С.1524. [Kravchenko, T.A., Vakhnin, D.D., Pridorogina, V.E., and Shafrova, M.F., Electrochemical Activity of Metal–Ion Exchanger Nanocomposites, Russ. J. Electrochem., 2019, vol. 55, p. 1251.]
  21. Информация о продукте Lewatit K 2620. Режим доступа: http://filtroxrus.ru/uploads/files/smoly_LEWATIT/К%202620-RUS.pdf (дата обращения: 10.07.2022). [Product Information Lewatit K 2620. Access mode: http://filtroxrus.ru/uploads/files/smoly_LEWATIT/К%202620-RUS.pdf (accessed: 10.07.2022)].
  22. Cелеменев, В.Ф., Славинская, Г.В., Хохлов, В.Ю., Иванов, В.А., Горшков, В.И., Тимофеевская, В.Д. Практикум по ионному обмену. Учеб. пособие. Воронеж: Изд-во Воронеж. ун-та, 2004. 160 с. [Selemenev, V.F., Slavinskaya, G.V., Khokhlov, V.Yu., Ivanov, V.A., Gorshkov, V.I., and Timofeevskaya, V.D. Workshop on ion exchange (in Russian). Study guide. Voronezh: Voron. State Univer. Publ. House, 2004. 160 p.]

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (162KB)
3.

Download (402KB)
4.

Download (60KB)
5.

Download (60KB)
6.

Download (34KB)
7.

Download (48KB)
8.

Download (31KB)

Copyright (c) 2023 Т.А. Кравченко, В.А. Крысанов, И.А. Головин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies