Changes in the Global Water Exchange by the Results of Historical Experiments on Climate Models under CMIP-6 Project

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Long-term (up to 165 years) series of globally averaged values of the main water exchange components, obtained as the result of historic experiments on several dozen (from 34 to 41) climate models of CMIP-6 project, are analyzed. The examined characteristics include variations of evaporation from ocean surface, precipitation over the ocean, effective evaporation from the ocean (total horizontal moisture transfer in the atmosphere from the ocean to land), and total model river runoff from the continents. It is shown that the model precipitation over the ocean effectively filters out the monotonic positive trend in evaporation from the ocean and, therefore, increases the stationarity of the total chain of global water exchange, including long-term changes in the global river runoff.

About the authors

S. G. Dobrovolskii

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: sgdo@bk.ru
Россия, 119333, Москва

V. P. Yushkov

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: sgdo@bk.ru
Россия, 119333, Москва

I. V. Solomonova

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Author for correspondence.
Email: sgdo@bk.ru
Россия, 119333, Москва

References

  1. Водные ресурсы России и их использование / Под ред. И.А. Шикломанова. СПб.: ГГИ, 2008. 600 с.
  2. Добровольский С.Г. Глобальная гидрология. Процессы и прогнозы. М.: Геос, 2017. 526 с.
  3. Добровольский С.Г. Глобальные изменения речного стока. М.: Геос, 2011. 660 с.
  4. Добровольский С.Г. Межгодовые и многолетние изменения стока рек мира // Вод. ресурсы. 2011. Т. 38. № 6. С. 643–660.
  5. Добровольский С.Г., Татаринович Е.В., Юшков В.П. Сток важнейших рек России и его изменчивость в климатических моделях проекта CMIP-5 // Метеорология и гидрология. 2016. № 12. С. 44–62.
  6. Мировой водный баланс и водные ресурсы Земли. Л.: Гидрометеоиздат, 1974. 640 с.
  7. Яглом А.М. Введение в теорию стационарных случайных функций // Успехи математических наук. 1952. Т. 7. Вып. 5 (51). С. 3–168.
  8. Яглом А.М. Корреляционная теория стационарных случайных функций. С примерами из метеорологии. Л.: Гидрометеоиздат, 1981. 280 с.
  9. Climate Data Operators. User’s Guide. Ver. 1.6.1 [Электронный ресурс]. http://code.zmaw.de/projects/cdo/ (дата обращения: 03.02.2021)
  10. Dobrovolski S.G., Yushkov V.P., Istomina M.N. Statistical Modeling of the Global River Runoff Using GCMs: Comparison with the Observational Data and Reanalysis Results // Water Resour. 2019. V. 46. Suppl. 2. P. S17–S24.
  11. Earth System Grid Federation (ESGF) [Электронный ресурс]. https://esgf–data.dkrz.de/ (дата обращения: 03.02.2021)
  12. Hasselmann K. Stochastic climate models. Pt I. Theory // Tellus. 1976. V. 28. P. 473–485.
  13. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Eds H.O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama. Cambridge; N. Y.: Cambridge Univ. Press, 2022. 63 p.
  14. Lemke P. Stochastic climate models. Part III. Application to zonally averaged energy models // Tellus. 1977. V. 29. № 5. P. 385–392.
  15. Max Planck Institute fur Meteorology (MPI-M). Climate Data Operators [Электронный ресурс]. https://code.mpimet.mpg.de/projects/cdo (дата обращения: 03.02.2021)
  16. PCMDI: Program for Climate Model. Diagnosis and Interpretation. [Электронный ресурс]. http://pcmdi9/llnl.gov/ (дата обращения: 03.02.2021)
  17. UCAR Community Programs. [Электронный ресурс]. https://www.unidata.ucar.edu/software/netcdf/software.html (дата обращения: 03.02.2021)
  18. Ulrych T.J., Bishop T. Maximum entropy spectral analysis and autoregressive decomposition. // Rev. Geophys. Space Phys. 1975. V. 13. P. 183–200.
  19. World Climate Research Programme (WCRP). [Электронный ресурс]. https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 (дата обращения: 03.02.2021)
  20. Yaglom A.M. An introduction to the theory of stationary random functions. N.Y.: Prentice-Hall, Englewood Cliffs, 1962. 235 p.
  21. Yaglom A.M. Correlation theory of stationary and related random functions. Berlin: Springer, 1987. V. 1. Basic results. 526 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (168KB)
4.

Download (169KB)
5.

Download (416KB)
6.

Download (184KB)
7.

Download (236KB)
8.

Download (239KB)
9.

Download (174KB)
10.

Download (249KB)
11.

Download (888KB)

Copyright (c) 2023 С.Г. Добровольский, В.П. Юшков, И.В. Соломонова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies