Catalytic and electrocatalytic mechanisms of cytochromes P450 in the development of biosensors and bioreactors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cytochromes P450 are unique family of isozymes, discovered in all kingdoms of living species (in animals, bacteria, plants, fungi, archaea). The main functional role of the cytochromes P450 is biotransformation of exogenous and endogenous compounds. This review is highlighted problem of enchasing effectivity of electrocatalysis of cytochromes P450, enzymes that have unique capabilities both for biosensors’ design and for biotechnological application. In this review paper, we summarize main methods and modern trends based on biochemical mechanism of cytochromes P450 for development of reconstructing and electrochemical catalytic systems for practical application of these enzymes.

About the authors

P. I Koroleva

Institute of Biomedical Chemistry (IBMC)

119121 Moscow, Russia

T. V Bulko

Institute of Biomedical Chemistry (IBMC)

119121 Moscow, Russia

L. E Agafonova

Institute of Biomedical Chemistry (IBMC)

119121 Moscow, Russia

V. V Shumyantseva

Institute of Biomedical Chemistry (IBMC);The Russian National Research Medical University named after N. I. Pirogov

Email: viktoria.shumyantseva@ibmc.msk.ru
119121 Moscow, Russia;117997 Moscow, Russia

References

  1. Shumyantseva, V. V., Bulko, T. V., and Archakov, A. I. (2005) Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors, J. Inorg. Biochem., 99, 1051-1063, doi: 10.1016/j.jinorgbio.2005.01.014.
  2. Guengerich, F. P. (2015) Human cytochrome P450 enzymes, in Cytochrome P450: Structure, Mechanism, and Biochemistry (de Montellano, O. P. R., eds) Springer, N. Y., pp. 523-785, doi: 10.1007/978-3-319-12108-6.
  3. Zhang, Y.-Y., and Yang, L. (2009) Interactions between human cytochrome P450 enzymes and steroids: physiological and pharmacological implications, Expert Opin. Drug Metab. Toxicol., 5, 621-629, doi: 10.1517/1742525090296764.
  4. Oliw, E. H., Guengerich, F. P., and Oates, J. A. (1982) Oxygenation of arachidonic acid by hepatic monooxygenases. Isolation and metabolism of four epoxide intermediates, J. Biol. Chem., 257, 3771-3781, doi: 10.1016/S0021-9258(18)34848-8.
  5. Zanger, U. M., and Schwab, M. (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation, Pharmacol. Ther., 138, 103-141, doi: 10.1016/j.pharmthera.2012.12.007.
  6. Crettol, S., Petrovic, N., and Murray, M. (2010) Pharmacogenetics of phase I and phase II drug metabolism, Curr. Pharm. Des., 16, 204-219, doi: 10.2174/138161210790112674.
  7. Sono, M., Roach, M. P., Coulter, E. D., and Dawson, J. H. (1996) Heme-containing oxygenases, Chem. Rev., 96, 2841-2887, doi: 10.1021/cr9500500.
  8. Zuccarello, L., Barbosa, C., Todorovic, S., and Selivera, C. M. (2021) Electrocatalysis by heme enzymes-applications in biosensing, Catalysts, 11, 218, doi: 10.3390/catal11020218.
  9. Bandookwala, M., Nemani, K. S., Chatterjee, B., and Sengupta, P. (2020) Reactive metabolites: generation and estimation with electrochemistry based analytical strategy as an emerging Screening tool, Curr. Anal. Chem., 16, 811-825, doi: 10.2174/1573411016666200131154202.
  10. Portychova, L., and Schug, K. A. (2017) Instrumentation and applications of electrochemistry coupled to mass spectrometry for studying xenobiotic metabolism: a review, Anal. Chim. Acta, 993, 1-21, doi: 10.1016/j.aca.2017.08.050.
  11. Grint, I., Crea, F., and Vasiliadou, R. (2022) The combination of electrochemistry and microfluidic technology in drug metabolism studies, ChemistryOpen, 11, e202200100, doi: 10.1002/open.202200100.
  12. Waskell, L., and Kim, J.-J. P. (2015) Electron transfer partners of cytochrome P450, in Cytochrome P450: Structure, Mechanism, and Biochemistry (de Montellano, O. P. R., eds) Springer, N. Y., pp. 33-68, doi: 10.1007/978-3-319-12108-6.
  13. Im, S.-C., and Waskell, L. (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b5, Arch. Biochem. Biophys., 507, 144-153, doi: 10.1016/j.abb.2010.10.023.
  14. Zhang, H., Im, S.-C., and Waskell, L. (2007) Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4*, J. Biol. Chem., 282, 29766-29776, doi: 10.1074/jbc.M703845200.
  15. Hannemann, F., Bichet, A., Ewen, K. M., and Bernhardt, R. (2007) Cytochrome P450 systems - biological variations of electron transport chains, Biochim. Biophys. Acta, 1770, 330-344, doi: 10.1016/j.bbagen.2006.07.017.
  16. Lambeth, J. D. (1990) in Molecular Mechanisms of Adrenal Steroidogenesis and Aspects of Regulation and Application (Ruckpaul, K., and Rein, H., eds) De Gruyter, Berlin, Boston, pp. 58-100, doi: 10.1515/9783112563281-003.
  17. Atkins, W. M., and Sligar, S. G. (1988) The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis, J. Biol. Chem., 263, 18842-18849, doi: 10.1016/S0021-9258(18)37359-9.
  18. Narhi, L. O., and Fulco, A. J. (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium, J. Biol. Chem., 261, 7160-7169, doi: 10.1016/S0021-9258(17)38369-2.
  19. Denisov, I. G., Makris, T. M., Sligar, S. G., and Schlichting, I. (2005) Structure and chemistry of cytochrome P450, Chem. Rev., 105, 2253-2278, doi: 10.1021/cr0307143.
  20. Katagiri, M., Ganguli, B. N., and Gunsalus, I. C. (1968) A soluble cytochrome P-450 functional in methylene hydroxylation, J. Biol. Chem., 243, 3543-3546, doi: 10.1016/S0021-9258(18)93343-0.
  21. Hedegaard, J., and Gunsalus, I. C. (1965) Mixed function oxidation: IV. Aninduced methylene hydroxylase in camphor oxidation, J. Biol. Chem., 240, 4038-4043, doi: 10.1016/S0021-9258(18)97147-4.
  22. Conrad, H. E., Lieb, K., and Gunsalus, I. C. (1965) Mixed function oxidation: III. An electron transport complex in camphor ketolactonization, J. Biol. Chem., 240, 4029-4037, doi: 10.1016/S0021-9258(18)97146-2.
  23. Estabrook, R. W., Hildebrandt, A., Baron, J., Netter, K. J., and Leibman, K. (1971) A new spectral species associated with cytochrome P-450 in liver microsomes, Biochem. Biophys. Res. Commun., 3, 260-261, doi: 10.1016/0006-291X(71)90372-X.
  24. Guengerich, F. P., and Johnson, W. W. (1997) Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems, Biochemistry, 36, 14741-14750, doi: 10.1021/bi9719399.
  25. Bernhardt, R. (1996) Cytochrome P450: structure, function and generation of reactive oxygen species, Rev. Physiol. Biochem. Pharmacol., 127, 137-221, doi: 10.1007/BFb0048267.
  26. Hrycay, E. G., and Bandiera, S. M. (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450, Arch. Biochem. Biophys., 522, 71-89, doi: 10.1016/j.abb.2012.01.003.
  27. Bernhardt, R., and Urlacher, V. B. (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations, Appl. Microbiol. Biotechnol., 98, 6185-6203, doi: 10.1007/s00253-014-5767-7.
  28. Kumar, S. (2010) Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation, Expert Opin. Drug Metab. Toxicol., 6, 115-131, doi: 10.1517/17425250903431040.
  29. Venkatakrishnan, K., von Moltke, L. L., and Greenblatt, D. J. (2001) Human drug metabolism and the cytochromes P450: application and relevance of in vitro models, J. Clin. Pharmacol., 41, 1149-1179, doi: 10.1177/00912700122012724.
  30. Baj-Rossi, C., De Micheli, G., and Carrara, S. (2011) P450-based nano-bio-sensors for personalized medicine, in Biosensors Emerging Materials and Applications (Serra, P. A., ed) InTech, London, doi: 10.5772/16328.
  31. Joseph, S., Rusling, J. F., Lvov, Y. M., Friedberg, T., and Fuhr, U. (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool, Biochem. Pharmacol., 65, 1817-1826, doi: 10.1016/S0006-2952(03)00186-2.
  32. Morant, M., Bak, S., Møller, B. L., and Werck-Reichhart, D. (2003) Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation, Curr. Opin. Biotechnol., 14, 151-162, doi: 10.1016/s0958-1669(03)00024-7.
  33. Jennewein, S., and Croteau, R. (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications, Appl. Microbiol. Biotechnol., 57, 13-19, doi: 10.1007/s002530100757.
  34. Falck, J. R., Reddy, Y. K., Haines, D. C., Reddy, K. M., Krishna, U. M., Graham, S., Murry, B., and Peterson, J. A. (2001) Practical, enantiospecific syntheses of 14,15-EET and leukotoxin B (vernolic acid), Tetrahedron Lett., 42, 4131-4133, doi: 10.1016/S0040-4039(01)00694-3.
  35. Krishnan, S. (2020) Bioelectrodes for evaluating molecular therapeutic and toxicity properties, Curr. Opin. Electrochem., 19, 20-26, doi: 10.1016/j.coelec.2019.09.004.
  36. Sakaki T. (2012) Practical application of cytochrome P450, Biol. Pharm. Bull., 35, 844-849, doi: 10.1248/bpb.35.844.
  37. Di Nardo, G., and Gilardi, G. (2020) Natural compounds as pharmaceuticals: the key role of cytochromes P450 reactivity, Trends Biochem. Sci., 45, 511-525, doi: 10.1016/j.tibs.2020.03.004.
  38. Girhard, M., Bakkes, P. J., Mahmoud, O., and Urlacher, V. B. (2015) P450 Biotechnology, in Cytochrome P450: Structure, Mechanism, and Biochemistry (de Montellano, O. P. R., eds) Springer, N. Y., pp. 451-520, doi: 10.1007/978-3-319-12108-_8.
  39. Urlacher, V. B., and Girhard, M. (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application, Trends Biotechnol., 30, 26-36, doi: 10.1016/j.tibtech.2011.06.012.
  40. Bernhardt, R. (2006) Cytochromes P450 as versatile biocatalysts, J. Biotechnol., 124, 128-145, doi: 10.1016/j.jbiotec.2006.01.026.
  41. Yun, C.-H., Kim, K.-H., Kim, D.-H., Jung, H.-C., and Pan, J.-G. (2007) The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities, Trends Biotechnol., 25, 289-298, doi: 10.1016/j.tibtech.2007.05.003.
  42. Correddu, D., Di Nardo, G., and Gilardi, G. (2021) Self-sufficient class VII cytochromes P450: from full-length structure to synthetic biology applications, Trends Biotechnol., 39, 1184-1207, doi: 10.1016/j.tibtech.2021.01.011.
  43. Gilardi, G., Meharenna, Y. T., Tsotsou, G. E., Sadeghi, S. J., Fairhead, M., and Giannini, S. (2002) Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology, Biosens. Bioelectron., 17, 133-145, doi: 10.1016/s0956-5663(01)00286-x.
  44. Cirino, P., and Arnold, F. (2002) Regioselectivity and activity of cytochrome P450 BM-3 and mutant f87A in reactions driven by hydrogen peroxide, Adv. Synth. Catal., 344, 932-937, doi: 10.1002/1615-4169(200210)344:9<932::AID-ADSC932>3.0.CO;2-M.
  45. Strohmaier, S. J., De Voss, J. J., Jurva, U., Andersson, S., and Gillam, E. M. J. (2020) Oxygen surrogate systems for supporting human drug-metabolizing cytochrome P450 enzymes, Drug Metab. Dispos., 48, 432-437, doi: 10.1124/dmd.120.090555.
  46. Albertolle, M. E., and Guengerich, F. P. (2018) The relationships between cytochromes P450 and H2O2: Production, reaction, and inhibition, J. Inorg. Biochem., 186, 228-234, doi: 10.1016/j.jinorgbio.2018.05.014.
  47. Veith, A., and Moorthy, B. (2018) Role of cytochrome P450s in the generation and metabolism of reactive oxygen species, Curr. Opin. Toxicol., 7, 44-51, doi: 10.1016/j.cotox.2017.10.003.
  48. Girhard, M., Kunigk, E., Tihovsky, S., Shumyantseva, V. V., and Urlacher, V. B. (2013) Light-driven biocatalysis with cytochrome P450 peroxygenases, Biotechnol. Appl. Biochem., 60, 111-118, doi: 10.1002/bab.1063.
  49. Chen, H., Huang, M., Yan, W., Bai, W.-J., and Wang, X. (2021) Enzymatic regio- and enantioselective C-H oxyfunctionalization of fatty acids, ACS Catal., 11, 10625-10630, doi: 10.1021/acscatal.1c03292.
  50. Wise, C. E., Hsieh, C. H., Poplin, N. L., and Makris, T. M. (2018) Dioxygen activation by the biofuel-generating cytochrome P450 OleT, ACS Catal., 8, 9342-9352, doi: 10.1021/acscatal.8b02631.
  51. Yamazaki, H., Nakano, M., Imai, Y., Ueng, Y.-F., Guengerich, F. P., and Shimada, T. (1996) Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes, Arch. Biochem. Biophys., 325, 174-182, doi: 10.1006/abbi.1996.0022.
  52. Backes, W. L., and Kelley, R. W. (2003) Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes, Pharmacol. Ther., 98, 221-233, doi: 10.1016/s0163-7258(03)00031-7.
  53. Shangguan, L., Wei, Y., Liu, X., Yu, J., and Liu, S. (2017) Confining a bi-enzyme inside the nanochannels of a porous aluminum oxide membrane for accelerating the enzymatic reactions, Chem. Commun., 53, 2673-2676, doi: 10.1039/C7CC00300E.
  54. Furlani, I. L., Oliveira, R. V., and Cass, Q. B. (2023) Immobilization of cytochrome P450 enzymes onto magnetic beads: an approach to drug metabolism and biocatalysis, Talanta Open, 7, 100181, doi: 10.1016/j.talo.2023.100181.
  55. Brian, W. R., Sari, M. A., Iwasaki, M., Shimada, T., Kaminsky, L. S., and Guengerich, F. P. (1990) Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae, Biochemistry, 29, 11280-11292, doi: 10.1021/bi00503a018.
  56. Rendic, S. (2002) Summary of information on human CYP enzymes: human P450 metabolism data, Drug Metab. Rev., 34, 83-448, doi: 10.1081/dmr-120001392.
  57. Srdič, M., Fessner, N. D., Yildiz, D., Glieder, A., Spiertz, M., and Schwaneberg, U. (2022) Preparative production of functionalized (N- and O-Heterocyclic) polycyclic aromatic hydrocarbons by human cytochrome P450 3A4 in a bioreactor, Biomolecules, 12, 153, doi: 10.3390/biom12020153.
  58. Shumyantseva, V. V., Bulko, T. V., Schmid, R. D., and Archakov, A. I. (2002) Photochemical properties of a riboflavins/cytochrome P450 2B4 complex, Biosens. Bioelectron, 17, 233-238, doi: 10.1016/S0956-5663(01)00181-6.
  59. Le, T.-K., Park, J. H., Choi, D. S., Lee, G.-Y., Choi, W. S., Jeong, K. J., Park, C. B., and Yun, C.-H. (2019) Solar-driven biocatalytic C-hydroxylation through direct transfer of photo induced electrons, Green Chem., 21, 515-525, doi: 10.1039/c8gc02398k.
  60. Park, J. H., Lee, S. H., Cha, Choi, G. S., D. S., Nam, D. H., Lee, J. H., Lee, J.-K., Yun, C.-H. Jeong, K. J., and Park, C. B. (2015) Cofactor-free light-driven whole-cell cytochrome P450 catalysis, Angew. Chem., 127, 983-987, doi: 10.1002/anie.201410059.
  61. Shumyantseva, V. V., Kuzikov, A. V., Masamrekh, R. A., Bulko, T. V., and Archakov, A. I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450, Biosens. Bioelectron., 15, 192-204 doi: 10.1016/j.bios.2018.08.040.
  62. Schneider, E., and Clark, D. S. (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors, Biosens. Bioelectron., 39, 1-13, doi: 10.1016/j.bios.2012.05.043.
  63. Ducharme, J., and Auclair, K. (2018) Use of bioconjugation with cytochrome P450 enzymes, Biochim. Biophys. Acta Proteins Proteomics, 1866, 32-51, doi: 10.1016/j.bbapap.2017.06.007.
  64. Valikhani, D., Bolivar, J. M., and Pelletier, J. N. (2021) An overview of cytochrome P450 immobilization strategies for drug metabolism studies, biosensing, and biocatalytic applications: challenges and opportunities, ACS Catal., 11, 9418-9434, doi: 10.1021/acscatal.1c02017.
  65. Bistolas, N., Wollenberger, U., Jung, C., and Scheller, F. W. (2005) Cytochrome P450 biosensors - a review, Biosens. Bioelectron., 20, 2408-2423, doi: 10.1016/j.bios.2004.11.023.
  66. Asturias-Arribas, L., Alonso-Lomillo, M. A., Domínguez-Renedo, O., and Arcos-Martínez, M. J. (2013) Electrochemical determination of cocaine using screen-printed cytochrome P450 2B4 based biosensors, Talanta, 105, 131-134, doi: 10.1016/j.talanta.2012.11.078.
  67. Rusling, F., Wang, B., and Yun, S. (2008) Electrochemistry of redox enzymes, in Bioelectrochemistry: Fundametals, Experimental Techniques and Applications (Bartlett, P. N., ed) John Wiley & Sons Ltd., New Jersey, pp. 39-85, doi: 10.1002/9780470753842.ch2.
  68. Lamb, D. C., Waterman, M. R., Kelly, S. L., and Guengerich, F. P. (2007) Cytochromes P450 and drug discovery, Curr. Opin. Biotechnol., 18, 504-512, doi: 10.1016/j.copbio.2007.09.010.
  69. Guengerich, F. P. (2021) Drug metabolism: cytochrome P450, in Reference Module in Biomedical Sciences, Elsevier, Netherlands, doi: 10.1016/B978-0-12-820472-6.99996-1.
  70. Bavishi, K., Laursen, T., Martinez, K. L., Møller, B. L., and Della Pia, E. A. (2016) Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Sci. Rep., 6, 29459, doi: 10.1038/srep29459.
  71. Shumyantseva, V. V., Koroleva, P. I., Bulko, T. V., Shkel, T. V., Gilep, A. A., and Veselovsky, A. V. (2023) Approaches for increasing the electrocatalitic efficiency of cytochrome P450 3A4, Bioelectrochemistry, 149, 108277, doi: 10.1016/j.bioelechem.2022.108277.
  72. Miller, W. L. (2005) Minireview: regulation of steroidogenesis by electron transfer, Endocrinology, 146, 2544-2550, doi: 10.1210/en.2005-0096.
  73. Di Nardo, G., and Gilardi, G. (2021) Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response, Bioelectrochemistry, 138, 107729, doi: 10.1016/j.bioelechem.2020.107729.
  74. Zhang, C., Lu, M., Lin, L., Huang, Z., Zhang, R., Wu, X., and Chen, Y. (2020) Riboflavin is directly involved in N-dealkylation catalyzed by bacterial cytochrome P450 monooxygenases, ChemBioChem, 21, 2297-2305, doi: 10.1002/cbic.202000071.
  75. Gray, J. J. (2004) The interaction of proteins with solid surfaces, Curr. Opin. Struct. Biol., 14, 110-115, doi: 10.1016/j.sbi.2003.12.001.
  76. Mie, Y., Ikegami, M., and Komatsu. Y. (2016) Nanoporous structure of gold electrode fabricated by anodization and its efficacy for direct electrochemistry of human cytochrome P450, Chem. Lett., 45, 640-642, doi: 10.1246/cl.160164.
  77. Dai, Q., Yang, L., Wang, Y., Cao, X., Yao, C., and Xu, X. (2020) Surface charge-controlled electron transfer and catalytic behavior of immobilized cytochrome P450 BM3 inside dendritic mesoporous silica nanoparticles, Anal. Bioanal. Chem., 412, 4703-4712, doi: 10.1007/s00216-020-02727-0.
  78. Xu, X., Zheng, Q., Bai, G., Dai, Q., Cao, X., Yao, Y., Liu, S., and Yao, C. (2018) Polydopamine functionalized nanoporous graphene foam as nanoreactor for efficient electrode-driven metabolism of steroid hormones, Biosens. Bioelectron., 119, 182-190, doi: 10.1016/j.bios.2018.08.009.
  79. Lu, J., Li, H., Cui, D., Zhang, Y., and Liu, S. (2014) Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO2 nanotube arrays, Anal. Chem., 86, 8003-8009, doi: 10.1021/ac502234x.
  80. Shumyantseva, V. V., Kuzikov, A. V., Masamrekh, R. A., Filippova, T. A., Koroleva, P. I., Agafonova, L. E., Bulko, T. V., and Archakov, A. I. (2022) Enzymology on an electrode and in a nanopore: analysis algorithms, enzyme kinetics, and perspectives, BioNanoScience, 12, 1341-1355, doi: 10.1007/s12668-022-01037-2.
  81. Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli F., and Walde, P. (2016) Enzymatic reactions in confined environments, Nat. Nanotech., 11, 409-420, doi: 10.1038/nnano.2016.54.
  82. Шумянцева В. В., Королева П. И., Гилеп А. А., Напольский К. С., Иванов Ю. Д., Канашенко С. Л., Арчаков А. И. (2022) Повышение эффективности электрокатализа цитохрома Р450 3А4 с помощью модификации электрода пространственно-упорядоченными наноструктурами на основе анодного оксида алюминия для исследования метаболических превращений лекарственных препаратов, Докл. Росс. Акад. Наук Науки о Жизни, 506, 62-67, doi: 10.31857/S26867389220502986.
  83. Koroleva, P. I., Gilep, A. A., Kraevskiy, S. V., Tsybruk, T. V., and Shumyantseva, V. V. (2023) Improving the efficiency of electrocatalysis of cytochrome P450 3A4 by modifying the electrode with membrane protein streptolysin o for studying the metabolic transformations of drugs, Biosensors, 13, 457, doi: 10.3390/bios13040457.
  84. Арчаков А. И. (1975) Микросомальное окисление, Наука, Москва, 327 с.
  85. Sultana, N., Schenkman, J. B., and Rusling. J. F. (2005) Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases, J. Am. Chem. Soc., 127, 13460-13461, doi: 10.1021/ja0538334.
  86. Krishnan, S., and Rusling, J. F. (2007) Thin film voltammetry of metabolic enzymes in rat liver microsomes, Electrochem. Commun., 9, 2359-2363, doi: 10.1016/j.elecom.2007.07.002.
  87. Nerimetla, R., and Krishnan, S. (2015) Electrocatalysis by subcellular liver fractions bound to carbon nanostructures for stereoselective green drug metabolite synthesis, Chem. Commun., 51, 11681-11684, doi: 10.1039/c5cc03364k.
  88. Xu, X., Bai, G., Song, L., Zheng, Q., Yao, Y., Liu, S., and Yao, C. (2017) Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite, Electrochim. Acta, 258, 1365-1374, doi: 10.1016/j.electacta.2017.11.195.
  89. Nerimetla, R., Premaratne, G., Liu, H., and Krishnan, S. (2018) Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles, Electrochim. Acta, 280, 101-107, doi: 10.1016/j.electacta.2018.05.085.
  90. Walgama, C., Nerimetla, R., Materer, N. F., Schildkraut, D., Elman, J. F., and Krishnan. S. (2015) A simple construction of electrochemical liver microsomal bioreactor for rapid drug metabolism and inhibition, Assays Anal. Chem., 87, 4712-4718, doi: 10.1021/ac5044362.
  91. Walker, A., Walgama, C., Nerimetla, R., Alavi, S. H., Echeverria, E., Harimkar, S. P., McIlroy, D. N., and Krishnan, S. (2020) Roughened graphite biointerfaced with P450 liver microsomes: Surface and electrochemical characterizations, Colloids Surf. B, 189, 110790, doi: 10.1016/j.colsurfb.2020.110790.
  92. Kahma, H., Filppula, A. M., Launiainen, T., Viinamäki, J., Neuvonen, M., Evangelista, E. A., Totah, R. A., and Backman, J. T. (2019) Disparities in CYP2C8 inactivation between enzyme sources, Drug Metab. Dispos., 47, 436-443, doi: 10.1124/dmd.118.085498.
  93. Kumar, V., Rock, D. A., Warren, C. J., Tracy, T. S., and Wahlstrom, J. L. (2006) Enzyme source effects on CYP2C9 kinetics and inhibition, Drug Metab. Dispos., 34, 1903-1908, doi: 10.1124/dmd.106.010249.
  94. Nerimetla, R., Walgama, C., Singh, V., Hartson, S. D., and Krishnan, S. (2017) Mechanistic insights on the voltage-driven biocatalysis of a cytochrome P450 bactosomal film on a self-assembled monolayer, ACS Catal., 7, 3446-3453, doi: 10.1021/acscatal.6b03588.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies