CRISPR/Cas9-mediated genome editing of the Komagataella phaffii to obtain a phytase-producer markerless strain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the CRISPR/Cas9 system, the recipient strains K. phaffii VKPM Y-5013 (His- phenotype) and K. phaffii VKPM Y-5014 (Leu- phenotype) were derived from the K. phaffii VKPM Y-4287 strain, which has a high expression potential. Based on developed recipients, markerless producers can be obtained. The gene inactivation efficiency with different variants of sgRNA ranged from 65 to 98% and from 15 to 72% for HIS4 and LEU2, respectively. The recipient strains retained the growth characteristics of the parent strain and have a high expression potential, as estimated by the production of heterologous phytase from Citrobacter gillenii. The average productivity of the transformants based on K. phaffii VKPM Y-5013 and K. phaffii VKPM Y-5014 strains was 2.1 and 2.0 times higher than the productivity of the transformants of the commercial K. phaffii GS115 strain. Sequential integration of genetic material into the genome of the K. phaffii VKPM Y-5013 strain was proposed. A highly effective multicopy markerless strain producing C. gillenii phytase was obtained.

About the authors

A. A Tkachenko

NRC “Kurchatov Institute”

Email: artur.tka4enko10@gmail.com
117545 Moscow, Russia

L. N Borshchevskaya

NRC “Kurchatov Institute”

117545 Moscow, Russia

S. P Sineoky

NRC “Kurchatov Institute”

117545 Moscow, Russia

T. L Gordeeva

NRC “Kurchatov Institute”

117545 Moscow, Russia

References

  1. Ahmad, M., Hirz, M., Pichler, H., and Schwab, H. (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98, 5301-5317, doi: 10.1007/s00253-014-5732-5.
  2. Luo, H. Y., Yao, B., Yuan, T. Z., Wang, Y. R., Shi, X. Y., Wu, N. F., and Fan, Y. L. (2004) Overexpression of Escherchia coli phytase with high specific activity, Sheng Wu Gong Cheng Xue Bao=Chin. J. Biotechnol., 20, 78-84.
  3. Huang, H., Luo, H., Yang, P., Meng, K., Wang, Y., Yuan, T., Bai, Y., and Yao, B. (2006) A novel phytase with preferable characteristics from Yersinia intermedia, Biochem. Biophys. Res. Commun., 350, 884-889, doi: 10.1016/j.bbrc.2006.09.118.
  4. Xiong, A. S., Yao, Q. H., Peng, R. H., Zhang, Z., Xu, F., Liu, J. G., Han, P. L., and Chen, J. M. (2006) High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris, App. Microbiol. Biotechnol., 72, 1039-1047, doi: 10.1007/s00253-006-0384-8.
  5. Pal Roy, M., Mazumdar, D., Dutta, S., Saha, S. P., and Ghosh, S. (2016) Cloning and expression of phytase appA gene from Shigella sp. CD2 in Pichia pastoris and comparison of properties with recombinant enzyme expressed in E. coli, PLoS One, 11, e0145745, doi: 10.1371/journal.pone.0145745.
  6. Zhao, W., Xiong, A., Fu, X., Gao, F., Tian, Y., and Peng, R. (2010) High level expression of an acid-stable phytase from Citrobacter freundii in Pichia pastoris, Appl. Biochem. Biotechnol., 162, 2157-2165, doi: 10.1007/s12010-010-8990-4.
  7. Розанов А. С., Першина Е. Г., Богачева Н. В., Шляхтун В., Сычев А. А., Пельтек С. Е. (2020) Разнообразие и распространение метилотрофных дрожжей, используемых в генной инженерии, Вавиловский журнал генетики и селекции, 24, 149-157, doi: 10.18699/VJ20.602.
  8. Pronk, J. T. (2002) Auxotrophic yeast strains in fundamental and applied research, App. Environ. Microbiol., 68, 2095-2100, doi: 10.1128/AEM.68.5.2095-2100.2002.
  9. Wang, Y., Yau, Y. Y., Perkins-Balding, D., and Thomson, J. G. (2011) Recombinase technology: applications and possibilities, Plant Cell Rep., 30, 267-285, doi: 10.1007/s00299-010-0938-1.
  10. Cregg, J. M., Barringer, K. J., Hessler, A. Y., and Madden, K. R. (1985) Pichia pastoris as a host system for transformations, Mol. Cell. Biol., 5, 3376-3385, doi: 10.1128/mcb.5.12.3376-3385.1985.
  11. Theodorakis, C. W. (2018) Mutagenesis, in Encyclopedia Ecology (S. E. Jørgensen, B. D. Fath, eds.) Academic Press, pp. 2475-2484, doi: 10.1016/b978-008045405-4.00408-0.
  12. Näätsaari, L., Mistlberger, B., Ruth, C., Hajek, T., Hartner, F. S., and Glieder, A. (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology, PLoS One, 7, e39720, doi: 10.1371/journal.pone.0039720.
  13. Weninger, A., Fischer, J. E., Raschmanova, H., Vogl, T., and Glieder, A. (2018) Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers, J. Cell. Biochem., 119, 3183-3198, doi: 10.1002/jcb.26474.
  14. Weninger A., Hatzl A. M., Schmid C., Vogl, T., and Glieder, A. (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris, J. Biotechnol., 235, 139-149, doi: 10.1016/j.jbiotec.2016.03.027.
  15. Немудрый А. А., Валетдинова К. Р., Медведев С. П., Закиян С. М. (2014) Системы редактирования геномов TALEN и CRISPR/Cas инструменты открытий, Acta Naturae, 6, 20-42, doi: 10.32607/20758251-2014-6-3-19-40.
  16. Mohammadhassan, R., Tutunchi, S., Nasehi, N, Goudarziasl, F., and Mahya, L. (2023) The prominent characteristics of the effective sgRNA for a precise CRISPR genome editing, CRISPR Technol. Recent Adv., IntechOpen, doi: 10.5772/intechopen.106711.
  17. Гордеева Т. Л., Борщевская Л. Н., Федай Т. В., Ткаченко А. А., Синеокий С. П. (2021) Изучение экспрессионного потенциала новых штаммов дрожжей рода Komagataella, Биотехнология, 37, 5-13, doi: 10.21519/0234-2758-2021-37-4-5-13.
  18. Tkachenko, A. A., Kalinina, A. N., Borshchevskaya, L. N., Sineoky, S. P., and Gordeeva, T. L. (2021) A novel phytase from Citrobacter gillenii: characterization and expression in Pichia pastoris (Komagataella pastoris), FEMS Microbiol. Lett., 368, fnaa217, doi: 10.1093/femsle/fnaa217.
  19. Gao, Y., and Zhao, Y. (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing, J. Integr. Plant. Biol., 56, 343-349, doi: 10.1111/jipb.12152.
  20. Heigwer, F., Kerr, G., and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification, Nat. Methods, 11, 122-123, doi: 10.1038/nmeth.2812.
  21. Gassler, T., Heistinger, L., Mattanovich, D., Gasser, B., and Prielhofer, R. (2019) CRISPR/Cas9-mediated homology-directed genome editing in Pichia pastoris, Recombinant protein production in yeast, Methods in Molecular Biology, Humana Press, N.Y., pp. 211-225, doi: 10.1007/978-1-4939-9024-5_9.
  22. Gasser, B., Prielhofer, R., Marx, H., Maurer, M., Nocon, J., Steiger, M., Puxbaum, V., Sauer, M., and Mattanovich, D. (2013) Pichia pastoris: protein production host and model organism for biomedical research, Fut. Microbiol., 8, 191-208, doi: 10.2217/fmb.12.133.
  23. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor, Cold Spring Harbor Laboratory Press, N.Y.
  24. Chen, C. C., Wu, P. H., Huang, C. T., and Cheng, K. (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase, Enzyme Microb. Technol., 35, 315-320, doi: 10.1016/j.enzmictec.2004.05.007.
  25. Ребриков Д. В. (2011) ПЦР в реальном времени, БИНОМ, Москва.
  26. Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S. V., and Cregg, J. M. (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter, Gene, 186, 37-44, doi: 10.1016/S0378-1119(96)00675-0.
  27. Wong, N., Liu, W., and Wang, X. (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system, Genome Biol., 16, 218, doi: 10.1186/s13059-015-0784-0.
  28. Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases, Genome Res., 24, 132-141, doi: 10.1101/gr.162339.113.
  29. Yang, Y., Liu, G., Chen, X., Liu, M., Zhan, C., Liu, X., and Bai, Z. (2020) High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris, Enzyme Microb. Technol., 138, 109556, doi: 10.1016/j.enzmictec.2020.109556.
  30. Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J., and Root, D. E. (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation, Nat. Biotechnol., 32, 1262-1267, doi: 10.1038/nbt.3026.
  31. Liu, Q., Shi, X., Song, L., Liu, H., Zhou, X., Wang, Q., Zhang, Y., and Cai, M. (2019) CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris, Microb. Cell Factories, 18, 144, doi: 10.1186/s12934-019-1194-x.
  32. Патент № 2787584С1 Российская Федерация, МПК C12N1/19, C12N15/81, C12N9/24. Штамм дрожжей Komagataella phaffii с инактивированным геном HIS4 - реципиент для конструирования безмаркерных штаммов-продуцентов гетерологичных белков: №2022127026: заявл. 18.10.2022: опубл. 11.01.2023/Ткаченко А. А., Гордеева Т. Л., Синеокий С. П., Борщевская Л. Н., Федай Т. Д.; заявитель Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" - 11 с.
  33. Патент № 2788528 Российская Федерация, МПК C12N 1/19, C12N 15/63. Штамм дрожжей Komagataella phaffii с инактивированным геном LEU2 - реципиент для конструирования штаммов-продуцентов гетерологичных белков: № 2022127025: заявл. 18.10.2022: опубл. 23.01.2023/Ткаченко А. А., Гордеева Т. Л., Синеокий С. П., Борщевская Л. Н.; заявитель Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" - 13 с.
  34. Hsu, P. D., Lander, E. S., and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262-1278, doi: 10.1016/j.cell.2014.05.010.
  35. Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S., and Yang, S. H. (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering, Mol. Ther. Nucleic. Acids, 4, E264, doi: 10.1038/mtna.2015.37.
  36. Zhu, T., Guo, M., Tang, Z., Zhang, M., Zhuang, Y., Chu, J., and Zhang, S. (2009) Efficient generation of multi-copy strains for optimizing secretory expression of porcine insulin precursor in yeast Pichia pastoris, J. Appl. Microbiol., 107, 954-963, doi: 10.1111/j.1365-2672.2009.04279.x.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies