Heterologous expression of recombinant proteins and their derivatives used as carriers for conjugate vaccines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The carrier proteins that provide an effective and long-term immune response to weak antigens has become a real breakthrough in disease prevention, making it available to a wider range of patients and making it possible to obtain reliable vaccines against a variety of pathogens. Currently, research is continuing both to identify new peptides, proteins, and their complexes potentially suitable for use as carriers, and to develop new methods for isolation, purification and conjugation of already known and well-proven proteins. The use of recombinant proteins has a number of advantages over isolation from natural sources, such as simpler cultivation of the host organism, the possibility of modifying the genetic construction, the use of numerous promoter variants, signal sequences, and other regulatory elements. This review is devoted to the methods of obtaining both traditional and new recombinant proteins and their derivatives being used or potentially suitable for use as carrier proteins for conjugate vaccines.

About the authors

Yu. A Khodak

Institute of Bioengineering, FRC Biotechnlogy, Russian Academy of Sciences

Email: salix33@gmail.com
117312 Moscow, Russia

References

  1. Weller, P. F., Smith, A. L., Smith, D. H., and Anderson, P. (1978) Role of immunity in the clearance of bacteremia due to Haemophilus influenzae, J. Infect. Diseases, 138, 427-436, doi: 10.1093/infdis/138.4.427.
  2. Finlay, B. B., and Falkow, S. (1997) Common themes in microbial pathogenicity revisited, Microbiol. Mol. Biol. Rev., 61, 136-169, doi: 10.1128/mmbr.61.2.136-169.1997.
  3. Kasper, D. L. (1986) Bacterial capsule - old dogmas and new tricks, J. Infect. Diseases, 153, 407-415, doi: 10.1093/infdis/153.3.407.
  4. Zimmermann, S., and Lepenies, B. (2015) Glycans as vaccine antigens and adjuvants: immunological considerations, Methods Mol. Biol., 1331, 11-26, doi: 10.1007/978-1-4939-2874-3_2.
  5. Hütter, J., and Lepenies, B. (2015) Carbohydrate-based vaccines: an overview, Methods Mol. Biol., 1331, 1-10, doi: 10.1007/978-1-4939-2874-3_1.
  6. MacCalman, T. E., Phillips-Jones, M. K., and Harding, S. E. (2019) Glycoconjugate vaccines: some observations on carrier and production methods, Biotechnol. Genet. Engin. Rev., 35, 93-125, doi: 10.1080/02648725.2019.1703614.
  7. Avci, F. Y., and Kasper, D. L. (2010) How bacterial carbohydrates influence the adaptive immune system, Annu. Rev. Immunol., 28, 107-130, doi: 10.1146/annurev-immunol-030409-101159.
  8. Micoli, F., Adamo, R., and Costantino, P. (2018) Protein carriers for glycoconjugate vaccines: history, selection criteria, characterization and new trends, Molecules, 23, 1451, doi: 10.3390/molecules23061451.
  9. Möller, J., Kraner, M. E., and Burkovski, A. (2019) More than a toxin: protein inventory of clostridium tetani toxoid vaccines, Proteomes, 7, 15, doi: 10.3390/proteomes7020015.
  10. Bayart, C., Mularoni, A., Hemmani, N., Kerachni, S., Jose, J., Gouet, P., Paladino, J., and Le Borgne, M. (2022) Tetanus toxin fragment C: structure, drug discovery research and production, Pharmaceuticals, 15, 756, doi: 10.3390/ph15060756.
  11. Bröker, M., Costantino, P., DeTora, L., McIntosh, E. D., and Rappuoli, R. (2011) Biochemical and biological characteristics of cross-reacting material 197 CRM197, a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications, Biologicals, 39, 195-204, doi: 10.1016/j.biologicals.2011.05.004.
  12. Shinefield, H. R. (2010) Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use, Vaccine, 28, 4335-4339, doi: 10.1016/j.vaccine.2010.04.072.
  13. Forsgren, A., Riesbeck, K., and Janson, H. (2008) Protein D of Haemophilus influenzae: a protective nontypeable H. influenzae antigen and a carrier for pneumococcal conjugate vaccines, Clin. Infect. Dis., 46, 726-731, doi: 10.1086/527396.
  14. Holst, J., Martin, D., Arnold, R., Huergo, C. C., Oster, P., O'Hallahan, J., and Rosenqvist, E. (2009) Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis, Vaccine, 27 Suppl 2, B3-B12, doi: 10.1016/j.vaccine.2009.04.071.
  15. Rossi, O., Citiulo, F., and Mancini, F. (2021) Outer membrane vesicles: moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans, Human Vaccines Immunother., 17, 601-613, doi: 10.1080/21645515.2020.1780092.
  16. Bröker, M., Berti, F., Schneider, J., and Vojtek, I. (2017) Polysaccharide conjugate vaccine protein carriers as a "neglected valency" - potential and limitations, Vaccine, 35, 3286-3294, doi: 10.1016/j.vaccine.2017.04.078.
  17. Dagan, R., Poolman, J., and Siegrist, C. A. (2010) Glycoconjugate vaccines and immune interference: a review, Vaccine, 28, 5513-5523, doi: 10.1016/j.vaccine.2010.06.026.
  18. Pichichero, M. E. (2013) Protein carriers of conjugate vaccines: characteristics, development, and clinical trials, Human Vaccines Immunother., 9, 2505-2523, doi: 10.4161/hv.26109.
  19. Van der Put, R. M. F., Metz, B., and Pieters, R. J. (2023) Carriers and antigens: new developments in glycoconjugate vaccines, Vaccines, 11, 219, doi: 10.3390/vaccines11020219.
  20. Kay, E., Cuccui, J., and Wren, B. W. (2019) Recent advances in the production of recombinant glycoconjugate vaccines, NPJ Vaccines, 4, 16, doi: 10.1038/s41541-019-0110-z.
  21. Choe, S., Bennett, M. J., Fujii, G., Curmi, P. M., Kantardjieff, K. A., Collier, R. J., and Eisenberg, D. (1992) The crystal structure of diphtheria toxin, Nature, 357, 216-222, doi: 10.1038/357216a0.
  22. Rappuoli, R. (1990) New and Improved Vaccines against Diphtheria and Tetanus, 2nd Edn., Marcel Dekker, New York.
  23. Brodzik, R., Spitsin, S., Pogrebnyak, N., Bandurska, K., Portocarrero, C., Andryszak, K., Koprowski, H., and Golovkin, M. (2009) Generation of plant-derived recombinant DTP subunit vaccine, Vaccine, 27, 3730-3734, doi: 10.1016/j.vaccine.2009.03.084.
  24. Greenfield, L., Bjorn, M. J., Horn, G., Fong, D., Buck, G. A., Collier, R. J., and Kaplan, D. A. (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta, Proc. Natl. Acad. Sci. USA, 80, 6853-6857, doi: 10.1073/pnas.80.22.6853.
  25. Malito, E., Bursulaya, B., Chen, C., Lo Surdo, P., Picchianti, M., Balducci, E., Biancucci, M., Brock, A., Berti, F., Bottomley, M. J., Nissum, M., Costantino, P., Rappuoli, R., and Spraggon, G. (2012) Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197, Proc. Natl. Acad. Sci. USA, 109, 5229-5234, doi: 10.1073/pnas.1201964109.
  26. Ratti, G., Rappuoli, R., and Giannini, G. (1983) The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome, Nucleic Acids Res., 11, 6589-6595, doi: 10.1093/nar/11.19.6589.
  27. Uchida, T., Pappenheimer, A. M., Jr., and Greany, R. (1973) Diphtheria toxin and related proteins. I. Isolation and properties of mutant proteins serologically related to diphtheria toxin, J. Biol. Chem., 248, 3838-3844, doi: 10.1016/S0021-9258(19)43810-6.
  28. Hu, V. W., and Holmes, R. K. (1987) Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior, Biochim. Biophys. Acta, 902, 24-30, doi: 10.1016/0005-2736(87)90132-5.
  29. Khatuntseva, E. A., and Nifantiev, N. E. (2022) Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens, Int. J. Biol. Macromol., 218, 775-798, doi: 10.1016/j.ijbiomac.2022.07.137.
  30. Sundaran, B., Rao, Y. U., and Boopathy, R. (2001) Process optimization for enhanced production of diphtheria toxin by submerged cultivation, J. Biosci. Bioengin., 91, 123-128, doi: 10.1263/jbb.91.123.
  31. Suwanpatcharakul, M., Pakdeecharoen, C., Visuttitewin, S., Pesirikan, N., Chauvatcharin, S., and Pongtharangkul, T. (2016) Process optimization for an industrial-scale production of Diphtheria toxin by Corynebacterium diphtheriae PW8, Biologicals, 44, 534-539, doi: 10.1016/j.biologicals.2016.08.002.
  32. Tchorbanov, A. I., Dimitrov, J. D., and Vassilev, T. L. (2004) Optimization of casein-based semisynthetic medium for growing of toxigenic Corinebacterium diphtheriae in a fermenter, Can. J. Microbiol., 50, 821-826, doi: 10.1139/w04-061.
  33. Rappuoli, R., Perugini, M., Marsili, I., and Fabbiani, S. (1983) Rapid purification of diphtheria toxin by phenyl sepharose and DEAE-cellulose chromatography, J. Chromatogr., 268, 543-548, doi: 10.1016/S0021-9673(01)95457-3.
  34. Zhou, J., and Petracca, R. (1999) Secretory expression of recombinant diphtheria toxin mutants in B. subtilis, J. Tongji Med. Univ., 19, 253-256, doi: 10.1007/bf02886955.
  35. Orr, N., Galen, J. E., and Levine, M. M. (1999) Expression and immunogenicity of a mutant diphtheria toxin molecule, CRM(197), and its fragments in Salmonella typhi vaccine strain CVD 908-htrA, Infect. Immun., 67, 4290-4294, doi: 10.1128/iai.67.8.4290-4294.1999.
  36. Stefan, A., Conti, M., Rubboli, D., Ravagli, L., Presta, E., and Hochkoeppler, A. (2011) Overexpression and purification of the recombinant diphtheria toxin variant CRM197 in Escherichia coli, J. Biotechnol., 156, 245-252, doi: 10.1016/j.jbiotec.2011.08.024.
  37. Mahamad, P., Boonchird, C., and Panbangred, W. (2016) High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli, Appl. Microbiol. Biotechnol., 100, 6319-6330, doi: 10.1007/s00253-016-7453-4.
  38. Xu, L., Zhang, J., Yu, R., and Su, Z. (2017) Expression of CRM197 in E. coli system and its application in universal influenza vaccine, Chin. J. Process Eng., 17, 1054-1058.
  39. Goffin, P., Dewerchin, M., De Rop, P., Blais, N., and Dehottay, P. (2017) High-yield production of recombinant CRM197, a non-toxic mutant of diphtheria toxin, in the periplasm of Escherichia coli, Biotechnol. J., 12, 1700168, doi: 10.1002/biot.201700168.
  40. Roth, R., van Zyl, P., Tsekoa, T., Stoychev, S., Mamputha, S., Buthelezi, S., and Crampton, M. (2017) Co-expression of sulphydryl oxidase and protein disulphide isomerase in Escherichia coli allows for production of soluble CRM(197), J. Appl. Microbiol., 122, 1402-1411, doi: 10.1111/jam.13441.
  41. Mishra, R. P. N., Yadav, R. S. P., Jones, C., Nocadello, S., Minasov, G., Shuvalova, L. A., Anderson, W. F., and Goel, A. (2018) Structural and immunological characterization of E. coli derived recombinant CRM(197) protein used as carrier in conjugate vaccines, Biosci. Rep., 38, BSR20180238, doi: 10.1042/bsr20180238.
  42. Park, A. R., Jang, S. W., Kim, J. S., Park, Y. G., Koo, B. S., and Lee, H. C. (2018) Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E. coli, PLoS One, 13, e0201060, doi: 10.1371/journal.pone.0201060.
  43. Fang, T., Tao, Z., Liu, Y., Yu, C., Zhi, R., and Yu, R. (2018) Expression, purification and characterization of diphtheria toxin mutant CRM197 in Eschrichia coli, Chinese J. Biotechnol., 34, 561-568, doi: 10.13345/j.cjb.170333.
  44. Chai, P., Pu, X., Ge, J., Ren, S., Xia, X., Luo, A., Wang, S., Wang, X., and Li, J. (2021) The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197, Appl. Microbiol. Biotechnol., 105, 1683-1692, doi: 10.1007/s00253-021-11139-8.
  45. Khodak, Y. A., Ryazanova, A. Y., Vorobiev, I. I., Kovalchuk, A. L., Ovechko, N. N., and Aparin, P. G. (2023) High-level production of soluble cross-reacting material 197 in Escherichia coli cytoplasm due to fine tuning of the target gene's mRNA structure, Biotech, 12, 9, doi: 10.3390/biotech12010009.
  46. Retallack, D.M., Chew, L., Jin, H. (2010) High Level Expression of Recombinant CRM197. Patent No. WO 2011/123139 A1.
  47. Духовлинов И. В., Богомолова Е. Г., Добровольская О. А., Ищук С. А., Федорова Е. А., Климов Н. А., Симбирцев А. С. (2018) Изучение продукции нетоксичного варианта дифтерийного токсина CRM197 в клетках Escherichia coli, Медицинский академический журнал, 18, 64-70.
  48. Духовлинов И. В., Федорова Е. А., Богомолова Е. Г., Добровольская О. А., Черняева Е. Н., Аль-Шехадат Р. И., Симбирцев А. С. (2015) Получение рекомбинантного белка CRM197 в клетках E. coli, Инфекция и иммунитет, 5, 37-44.
  49. Baglioni, P., Hochkoeppler, A., and Stefan, A. (2010) Bacterial expression of an artificial gene for the production of CRM197 and its derivatives. Patent No. WO 2010/150230 A1.
  50. Lee, H. C., Koo, B. S., Seo, H. J., Kim, J. S., Park, A. R., and Jang, S. W. (2019) Method for Efficiently Recovering and Purifying Active CRM197 from Insoluble CRM197 Protein Expressed in Inclusion Body. Patent No. WO 2019/151601 A1.
  51. Akshay, G., Ravi, P. N. M., Narender, D. M., and Mahima, D. (2016) Codon optimized polynucleotide for high level expression of CRM197. Patent No. WO 2016/079755 A1.
  52. Moxiao, L., Xue, Z., Donghai, W., Yingxia, S., Junxian, G., Jingyi, W., and Qingmin, W. (2010) Diphtheria Toxin Muton CRM197 and Its Preparation Process. Patent No. CN 100999548 A.
  53. Jingyi, W., Lixia, S., Tongwen, X., Ting, D., Xue, Z., and Kebo, W. (2012) Method for Purifying CRM197 Mutant. Patent No. CN 101265288 B.
  54. Lin, F., Xiao, J., and Wei, W. (2013) Preparation Method of Diphtheria Toxin Mutant CRM197. Patent No. CN 103266125 A.
  55. Mao, H. (2018) The Preparation Method of Diphtheria Toxin Muton CRM 197 Patent No. CN 104140972 B.
  56. Akshay, G., Tushar, J., Khrishnanad, T., Yogesh, M., Narender, D. M., and Mahima, D. (2017) Industrially Scalableprocess for Recovering Biologically Active Recombinant Carrier Proteins. Patent No. WO 2017/081700 A1.
  57. Blattner, C. R., Frisch, D. A., Novy, R. E., Henker, T. M., Steffen, E. A., Blattner, F. R., Choi, H., Posfai, G., and Landry, C. F. (2015) Enhanced Production of Recombinant CRM197 in E. coli. Patent No. WO 2015/134402 A1.
  58. Blais, N., Dehottay, P. M. H., Dewerchin, M., Goffin, P., and Martin, D. (2011) Expression System. Patent No. WO 2011/042516 A2.
  59. Ihssen, J., Kowarik, M., and Thony-Meyer, L.C. (2014) Methods and Compositions Relating to CRM197. Patent No. WO 2014/102265 A1.
  60. Hsu, Y., Sheu, S., Lei, B., and Wu, T. (2015) Development of the Soluble Recombinant CRM197 Production by E. coli. Patent No. US 2015/0184215 A1.
  61. Masson, L., Arbour, M., and Gauriat, M. (2019) Systems and Methods for the Production of Diphtheria Toxin Polypeptides. Patent No. WO 2019/035058 A1.
  62. Boock, J. T., Waraho-Zhmayev, D., Mizrachi, D., and DeLisa, M. P. (2015) Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them, Methods Mol. Biol., 1258, 79-97, doi: 10.1007/978-1-4939-2205-5_5.
  63. Graham, L. L., Beveridge, T. J., and Nanninga, N. (1991) Periplasmic space and the concept of the periplasm, Trends Biochem. Sci., 16, 328-329, doi: 10.1016/0968-0004(91)90135-i.
  64. Oganesyan, N., and Lees, A. (2015) Expression and Purification of CRM197 and Related Proteins. Patent No. WO 2015/117093 A1.
  65. Goretzki, K., and Habermann, E. (1985) Enzymatic hydrolysis of tetanus toxin by intrinsic and extrinsic proteases. Characterization of the fragments by monoclonal antibodies, Med. Microbiol. Immunol., 174, 139-150, doi: 10.1007/bf02298124.
  66. Bagetta, G., and Nisticò, G. (1994) Tetanus toxin as a neurobiological tool to study mechanisms of neuronal cell death in the mammalian brain, Pharmacol. Ther., 62, 29-39, doi: 10.1016/0163-7258(94)90003-5.
  67. Cohen, J. E., Wang, R., Shen, R. F., Wu, W. W., and Keller, J. E. (2017) Comparative pathogenomics of Clostridium tetani, PLoS One, 12, e0182909, doi: 10.1371/journal.pone.0182909.
  68. Roper, M. H., Wassilak, S. G. F., Tiwari, T. S. P., and Orenstein, W. A. (2017) Tetanus Toxoid, 7th Edn., Elsevier, Philadelphia, PA, USA.
  69. Bayart, C., Peronin, S., Jean, E., Paladino, J., Talaga, P., and Borgne, M. L. (2017) The combined use of analytical tools for exploring tetanus toxin and tetanus toxoid structures, J. Chromatogr., 1054, 80-92, doi: 10.1016/j.jchromb.2017.04.009.
  70. Kaumaya, P. T., Kobs-Conrad, S., Seo, Y. H., Lee, H., VanBuskirk, A. M., Feng, N., Sheridan, J. F., and Stevens, V. (1993) Peptide vaccines incorporating a "promiscuous" T-cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity, J. Mol. Recognit., 6, 81-94, doi: 10.1002/jmr.300060206.
  71. Franke, E. D., Corradin, G., and Hoffman, S. L. (1997) Induction of protective CTL responses against the Plasmodium yoelii circumsporozoite protein by immunization with peptides, J. Immunol., 159, 3424-3433, doi: 10.4049/jimmunol.159.7.3424.
  72. Wen, X., Wen, K., Cao, D., Li, G., Jones, R. W., Li, J., Szu, S., Hoshino, Y., and Yuan, L. (2014) Inclusion of a universal tetanus toxoid CD4+ T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines, Vaccine, 32, 4420-4427, doi: 10.1016/j.vaccine.2014.06.060.
  73. Su, Q. D., Zou, Y. N., Yi, Y., Shen, L. P., Ye, X. Z., Zhang, Y., Wang, H., Ke, H., Song, J. D., Hu, K. P., Cheng, B. L., Qiu, F., Yu, P. C., Zhou, W. T., Zhao, R., Cao, L., Dong, G. F., Bi, S. L., Wu, G. Z., Gao, G. F., et al. (2021) Recombinant SARS-CoV-2 RBD with a built in T helper epitope induces strong neutralization antibody response, Vaccine, 39, 1241-1247, doi: 10.1016/j.vaccine.2021.01.044.
  74. Ashton, A. C., Li, Y., Doussau, F., Weller, U., Dougan, G., Poulain, B., and Dolly, J. O. (1995) Tetanus toxin inhibits neuroexocytosis even when its Zn2+-dependent protease activity is removed, J. Biol. Chem., 270, 31386-31390, doi: 10.1074/jbc.270.52.31386.
  75. Li, Y., Aoki, R., and Dolly, J. O. (1999) Expression and characterisation of the heavy chain of tetanus toxin: reconstitution of the fully-recombinant dichain protein in active form, J. Biochem., 125, 1200-1208, doi: 10.1093/oxfordjournals.jbchem.a022404.
  76. Li, Y., Foran, P., Lawrence, G., Mohammed, N., Chan-Kwo-Chion, C. K., Lisk, G., Aoki, R., and Dolly, O. (2001) Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways, J. Biol. Chem., 276, 31394-31401, doi: 10.1074/jbc.M103517200.
  77. Blum, F. C., Przedpelski, A., Tepp, W. H., Johnson, E. A., and Barbieri, J. T. (2014) Entry of a recombinant, full-length, atoxic tetanus neurotoxin into Neuro-2a cells, Infect. Immun., 82, 873-881, doi: 10.1128/iai.01539-13.
  78. Przedpelski, A., Tepp, W. H., Pellett, S., Johnson, E. A., and Barbieri, J. T. (2020) A novel high-potency tetanus vaccine, mBio, 11, doi: 10.1128/mBio.01668-20.
  79. Chang, M. J., Ollivault-Shiflett, M., Schuman, R., Ngoc Nguyen, S., Kaltashov, I. A., Bobst, C., Rajagopal, S. P., Przedpelski, A., Barbieri, J. T., and Lees, A. (2022) Genetically detoxified tetanus toxin as a vaccine and conjugate carrier protein, Vaccine, 40, 5103-5113, doi: 10.1016/j.vaccine.2022.07.011.
  80. Chang, M., Oganesyan, N., and Lees, A. (2021) Production of Soluble Recombinant Protein. Patent No. WO 2021/188379 A2.
  81. Janson, H., Hedén, L. O., Grubb, A., Ruan, M. R., and Forsgren, A. (1991) Protein D, an immunoglobulin D-binding protein of Haemophilus influenzae: cloning, nucleotide sequence, and expression in Escherichia coli, Infect. Immun., 59, 119-125, doi: 10.1128/iai.59.1.119-125.1991.
  82. Munson, R. S., Jr., and Sasaki, K. (1993) Protein D, a putative immunoglobulin D-binding protein produced by Haemophilus influenzae, is glycerophosphodiester phosphodiesterase, J. Bacteriol., 175, 4569-4571, doi: 10.1128/jb.175.14.4569-4571.1993.
  83. Janson, H., Hedén, L. O., and Forsgren, A. (1992) Protein D, the immunoglobulin D-binding protein of Haemophilus influenzae, is a lipoprotein, Infect. Immun., 60, 1336-1342, doi: 10.1128/iai.60.4.1336-1342.1992.
  84. Akkoyunlu, M., Janson, H., Ruan, M., and Forsgren, A. (1996) Biological activity of serum antibodies to a nonacylated form of lipoprotein D of Haemophilus influenzae, Infect. Immun., 64, 4586-4592, doi: 10.1128/iai.64.11.4586-4592.1996.
  85. Behrouzi, A., Bouzari, S., Siadat, S. D., Jafari, A., and Irani, S. (2015) Molecular cloning, expression and purification of truncated hpd fragment of Haemophilus influenzae in Escherichia coli, Jundishapur J. Microbiol., 8, e23218, doi: 10.5812/jjm.23218.
  86. Akkoyunlu, M., Melhus, A., Capiau, C., van Opstal, O., and Forsgren, A. (1997) The acylated form of protein D of Haemophilus influenzae is more immunogenic than the nonacylated form and elicits an adjuvant effect when it is used as a carrier conjugated to polyribosyl ribitol phosphate, Infect. Immun., 65, 5010-5016, doi: 10.1128/iai.65.12.5010-5016.1997.
  87. Croxtall, J. D., and Keating, G. M. (2009) Pneumococcal polysaccharide protein D-conjugate vaccine (Synflorix; PHiD-CV), Paediatric Drugs, 11, 349-357, doi: 10.2165/11202760-000000000-00000.
  88. Novotny, L. A., Jurcisek, J. A., Godfroid, F., Poolman, J. T., Denoël, P. A., and Bakaletz, L. O. (2006) Passive immunization with human anti-protein D antibodies induced by polysaccharide protein D conjugates protects chinchillas against otitis media after intranasal challenge with Haemophilus influenzae, Vaccine, 24, 4804-4811, doi: 10.1016/j.vaccine.2006.03.021.
  89. Nurkka, A., Joensuu, J., Henckaerts, I., Peeters, P., Poolman, J., Kilpi, T., and Käyhty, H. (2004) Immunogenicity and safety of the eleven valent pneumococcal polysaccharide-protein D conjugate vaccine in infants, Pediatric Infect. Dis. J., 23, 1008-1014, doi: 10.1097/01.inf.0000143640.03214.18.
  90. Prymula, R., Peeters, P., Chrobok, V., Kriz, P., Novakova, E., Kaliskova, E., Kohl, I., Lommel, P., Poolman, J., Prieels, J. P., and Schuerman, L. (2006) Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study, Lancet, 367, 740-748, doi: 10.1016/s0140-6736(06)68304-9.
  91. Einhorn, M. S., Weinberg, G. A., Anderson, E. L., Granoff, P. D., and Granoff, D. M. (1986) Immunogenicity in infants of Haemophilus influenzae type B polysaccharide in a conjugate vaccine with Neisseria meningitidis outer-membrane protein, Lancet, 2, 299-302, doi: 10.1016/s0140-6736(86)90001-2.
  92. Granoff, D. M., Anderson, E. L., Osterholm, M. T., Holmes, S. J., McHugh, J. E., Belshe, R. B., Medley, F., and Murphy, T. V. (1992) Differences in the immunogenicity of three Haemophilus influenzae type B conjugate vaccines in infants, J. Pediatrics, 121, 187-194, doi: 10.1016/s0022-3476(05)81186-2.
  93. Liu, M. A., Friedman, A., Oliff, A. I., Tai, J., Martinez, D., Deck, R. R., Shieh, J. T., Jenkins, T. D., Donnelly, J. J., and Hawe, L. A. (1992) A vaccine carrier derived from Neisseria meningitidis with mitogenic activity for lymphocytes, Proc. Natl. Acad. Sci. USA, 89, 4633-4637, doi: 10.1073/pnas.89.10.4633.
  94. Qi, H. L., Tai, J. Y., and Blake, M. S. (1994) Expression of large amounts of neisserial porin proteins in Escherichia coli and refolding of the proteins into native trimers, Infect. Immun., 62, 2432-2439, doi: 10.1128/iai.62.6.2432-2439.1994.
  95. Fusco, P. C., Michon, F., Laude-Sharp, M., Minetti, C. A., Huang, C. H., Heron, I., and Blake, M. S. (1998) Preclinical studies on a recombinant group B meningococcal porin as a carrier for a novel Haemophilus influenzae type b conjugate vaccine, Vaccine, 16, 1842-1849, doi: 10.1016/s0264-410x(98)00174-1.
  96. Fusco, P. C., Michon, F., Tai, J. Y., and Blake, M. S. (1997) Preclinical evaluation of a novel group B meningococcal conjugate vaccine that elicits bactericidal activity in both mice and nonhuman primates, J. Infect. Dis., 175, 364-372, doi: 10.1093/infdis/175.2.364.
  97. Xia, M., Wei, C., Wang, L., Cao, D., Meng, X. J., Jiang, X., and Tan, M. (2016) Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus, Sci. Rep., 6, 25735, doi: 10.1038/srep25735.
  98. Ferrari, G., Garaguso, I., Adu-Bobie, J., Doro, F., Taddei, A. R., Biolchi, A., Brunelli, B., Giuliani, M. M., Pizza, M., Norais, N., and Grandi, G. (2006) Outer membrane vesicles from group B Neisseria meningitidis delta gna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles, Proteomics, 6, 1856-1866, doi: 10.1002/pmic.200500164.
  99. Gerke, C., Colucci, A. M., Giannelli, C., Sanzone, S., Vitali, C. G., Sollai, L., Rossi, O., Martin, L. B., Auerbach, J., Di Cioccio, V., and Saul, A. (2015) Production of a Shigella sonnei vaccine based on generalized modules for membrane antigens (GMMA), 1790GAHB, PLoS One, 10, e0134478, doi: 10.1371/journal.pone.0134478.
  100. Rossi, O., Pesce, I., Giannelli, C., Aprea, S., Caboni, M., Citiulo, F., Valentini, S., Ferlenghi, I., MacLennan, C. A., D'Oro, U., Saul, A., and Gerke, C. (2014) Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants, J. Biol. Chem., 289, 24922-24935, doi: 10.1074/jbc.M114.566570.
  101. Berlanda Scorza, F., Doro, F., Rodríguez-Ortega, M. J., Stella, M., Liberatori, S., Taddei, A. R., Serino, L., Gomes Moriel, D., Nesta, B., Fontana, M. R., Spagnuolo, A., Pizza, M., Norais, N., and Grandi, G. (2008) Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli DeltatolR IHE3034 mutant, Mol. Cell. Proteomics, 7, 473-485, doi: 10.1074/mcp.M700295-MCP200.
  102. Van de Waterbeemd, B., Streefland, M., van der Ley, P., Zomer, B., van Dijken, H., Martens, D., Wijffels, R., and van der Pol, L. (2010) Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process, Vaccine, 28, 4810-4816, doi: 10.1016/j.vaccine.2010.04.082.
  103. Keiser, P. B., Biggs-Cicatelli, S., Moran, E. E., Schmiel, D. H., Pinto, V. B., Burden, R. E., Miller, L. B., Moon, J. E., Bowden, R. A., Cummings, J. F., and Zollinger, W. D. (2011) A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression, Vaccine, 29, 1413-1420, doi: 10.1016/j.vaccine.2010.12.039.
  104. Berlanda Scorza, F., Colucci, A. M., Maggiore, L., Sanzone, S., Rossi, O., Ferlenghi, I., Pesce, I., Caboni, M., Norais, N., Di Cioccio, V., Saul, A., and Gerke, C. (2012) High yield production process for Shigella outer membrane particles, PLoS One, 7, e35616, doi: 10.1371/journal.pone.0035616.
  105. Koeberling, O., Ispasanie, E., Hauser, J., Rossi, O., Pluschke, G., Caugant, D. A., Saul, A., and MacLennan, C. A. (2014) A broadly-protective vaccine against meningococcal disease in sub-Saharan Africa based on generalized modules for membrane antigens (GMMA), Vaccine, 32, 2688-2695, doi: 10.1016/j.vaccine.2014.03.068.
  106. Rossi, O., Caboni, M., Negrea, A., Necchi, F., Alfini, R., Micoli, F., Saul, A., MacLennan, C. A., Rondini, S., and Gerke, C. (2016) Toll-like receptor activation by generalized modules for membrane antigens from lipid a mutants of Salmonella enterica serovars Typhimurium and Enteritidis, Clin. Vaccine Immunol., 23, 304-314, doi: 10.1128/cvi.00023-16.
  107. Rosenthal, J. A., Huang, C. J., Doody, A. M., Leung, T., Mineta, K., Feng, D. D., Wayne, E. C., Nishimura, N., Leifer, C., DeLisa, M. P., Mendez, S., and Putnam, D. (2014) Mechanistic insight into the TH1-biased immune response to recombinant subunit vaccines delivered by probiotic bacteria-derived outer membrane vesicles, PLoS One, 9, e112802, doi: 10.1371/journal.pone.0112802.
  108. Rappazzo, C. G., Watkins, H. C., Guarino, C. M., Chau, A., Lopez, J. L., DeLisa, M. P., Leifer, C. A., Whittaker, G. R., and Putnam, D. (2016) Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice, Vaccine, 34, 1252-1258, doi: 10.1016/j.vaccine.2016.01.028.
  109. Gujrati, V., Kim, S., Kim, S. H., Min, J. J., Choy, H. E., Kim, S. C., and Jon, S. (2014) Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy, ACS Nano, 8, 1525-1537, doi: 10.1021/nn405724x.
  110. Daleke-Schermerhorn, M. H., Felix, T., Soprova, Z., Ten Hagen-Jongman, C. M., Vikström, D., Majlessi, L., Beskers, J., Follmann, F., de Punder, K., van der Wel, N. N., Baumgarten, T., Pham, T. V., Piersma, S. R., Jiménez, C. R., van Ulsen, P., de Gier, J. W., Leclerc, C., Jong, W. S., and Luirink, J. (2014) Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach, Appl. Environ. Microbiol., 80, 5854-5865, doi: 10.1128/aem.01941-14.
  111. Gnopo, Y. M. D., Watkins, H. C., Stevenson, T. C., DeLisa, M. P., and Putnam, D. (2017) Designer outer membrane vesicles as immunomodulatory systems - reprogramming bacteria for vaccine delivery, Adv. Drug Deliv. Rev., 114, 132-142, doi: 10.1016/j.addr.2017.05.003.
  112. Micoli, F., Alfini, R., Di Benedetto, R., Necchi, F., Schiavo, F., Mancini, F., Carducci, M., Palmieri, E., Balocchi, C., Gasperini, G., Brunelli, B., Costantino, P., Adamo, R., Piccioli, D., and Saul, A. (2020) GMMA is a versatile platform to design effective multivalent combination vaccines, Vaccines, 8, 540, doi: 10.3390/vaccines8030540.
  113. Jiang, L., Driedonks, T. A. P., Jong, W. S. P., Dhakal, S., Bart van den Berg van Saparoea, H., Sitaras, I., Zhou, R., Caputo, C., Littlefield, K., Lowman, M., Chen, M., Lima, G., Gololobova, O., Smith, B., Mahairaki, V., Riley Richardson, M., Mulka, K. R., Lane, A. P., Klein, S. L., Pekosz, A., et al. (2022) A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants, J. Extracell. Vesicles, 11, e12192, doi: 10.1002/jev2.12192.
  114. Scaria, P. V., Rowe, C. G., Chen, B. B., Muratova, O. V., Fischer, E. R., Barnafo, E. K., Anderson, C. F., Zaidi, I. U., Lambert, L. E., Lucas, B. J., Nahas, D. D., Narum, D. L., and Duffy, P. E. (2019) Outer membrane protein complex as a carrier for malaria transmission blocking antigen Pfs230, NPJ Vaccines, 4, 24, doi: 10.1038/s41541-019-0121-9.
  115. Palmieri, E., Kis, Z., Ozanne, J., Di Benedetto, R., Ricchetti, B., Massai, L., Carducci, M., Oldrini, D., Gasperini, G., Aruta, M. G., Rossi, O., Kontoravdi, C., Shah, N., Mawas, F., and Micoli, F. (2022) GMMA as an alternative carrier for a glycoconjugate vaccine against group A streptococcus, Vaccines, 10, 1034, doi: 10.3390/vaccines10071034.
  116. Micoli, F., Alfini, R., Di Benedetto, R., Necchi, F., Schiavo, F., Mancini, F., Carducci, M., Oldrini, D., Pitirollo, O., Gasperini, G., Balocchi, C., Bechi, N., Brunelli, B., Piccioli, D., and Adamo, R. (2021) Generalized modules for membrane antigens as carrier for polysaccharides: impact of sugar length, density, and attachment site on the immune response elicited in animal models, Front. Immunol., 12, 719315, doi: 10.3389/fimmu.2021.719315.
  117. Pavliakova, D., Moncrief, J. S., Lyerly, D. M., Schiffman, G., Bryla, D. A., Robbins, J. B., and Schneerson, R. (2000) Clostridium difficile recombinant toxin A repeating units as a carrier protein for conjugate vaccines: studies of pneumococcal type 14, Escherichia coli K1, and Shigella flexneri type 2a polysaccharides in mice, Infect. Immun., 68, 2161-2166, doi: 10.1128/iai.68.4.2161-2166.2000.
  118. Lukac, M., Pier, G. B., and Collier, R. J. (1988) Toxoid of Pseudomonas aeruginosa exotoxin A generated by deletion of an active-site residue, Infect. Immun., 56, 3095-3098, doi: 10.1128/iai.56.12.3095-3098.1988.
  119. Lukac, M., and Collier, R. J. (1988) Restoration of enzymic activity and cytotoxicity of mutant, E553C, Pseudomonas aeruginosa exotoxin A by reaction with iodoacetic acid, J. Biol. Chem., 263, 6146-6149, doi: 10.1016/S0021-9258(18)68762-9.
  120. Burkhardt, M., Reiter, K., Nguyen, V., Suzuki, M., Herrera, R., Duffy, P. E., Shimp, R., Jr., MacDonald, N. J., Olano, L. R., and Narum, D. L. (2019) Assessment of the impact of manufacturing changes on the physicochemical properties of the recombinant vaccine carrier ExoProtein A, Vaccine, 37, 5762-5769, doi: 10.1016/j.vaccine.2018.09.037.
  121. Margarit, I., Rinaudo, C. D., Galeotti, C. L., Maione, D., Ghezzo, C., Buttazzoni, E., Rosini, R., Runci, Y., Mora, M., Buccato, S., Pagani, M., Tresoldi, E., Berardi, A., Creti, R., Baker, C. J., Telford, J. L., and Grandi, G. (2009) Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm, J. Infect. Dis., 199, 108-115, doi: 10.1086/595564.
  122. Park, W. J., Yoon, Y. K., Park, J. S., Pansuriya, R., Seok, Y. J., and Ganapathy, R. (2021) Rotavirus spike protein ΔVP8* as a novel carrier protein for conjugate vaccine platform with demonstrated antigenic potential for use as bivalent vaccine, Sci. Rep., 11, 22037, doi: 10.1038/s41598-021-01549-z.
  123. Carvalho, R. J., Cabrera-Crespo, J., Tanizaki, M. M., and Gonçalves, V. M. (2012) Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences, Appl. Microbiol. Biotechnol., 94, 683-694, doi: 10.1007/s00253-011-3649-9.
  124. Khan, M. N., and Pichichero, M. E. (2012) Vaccine candidates PhtD and PhtE of Streptococcus pneumoniae are adhesins that elicit functional antibodies in humans, Vaccine, 30, 2900-2907, doi: 10.1016/j.vaccine.2012.02.023.
  125. Feng, S., Xiong, C., Wang, G., Wang, S., Jin, G., and Gu, G. (2020) Exploration of recombinant fusion proteins YAPO and YAPL as carrier proteins for glycoconjugate vaccine design against Streptococcus pneumoniae infection, ACS Infect. Dis., 6, 2181-2191, doi: 10.1021/acsinfecdis.0c00260.
  126. Kapoor, N., Uchiyama, S., Pill, L., Bautista, L., Sedra, A., Yin, L., Regan, M., Chu, E., Rabara, T., Wong, M., Davey, P., Fairman, J., and Nizet, V. (2022) Non-native amino acid click chemistry-based technology for site-specific polysaccharide conjugation to a bacterial protein serving as both carrier and vaccine antigen, ACS Omega, 7, 24111-24120, doi: 10.1021/acsomega.1c07360.
  127. Qian, W., Huang, Z., Chen, Y., Yang, J., Wang, L., Wu, K., Chen, M., Chen, N., Duan, Y., Shi, J., Zhang, Y., and Li, Q. (2020) Elicitation of integrated immunity in mice by a novel pneumococcal polysaccharide vaccine conjugated with HBV surface antigen, Sci. Rep., 10, 6470, doi: 10.1038/s41598-020-62185-7.
  128. Tsai, C. W., Duggan, P. F., Shimp, R. L., Jr., Miller, L. H., and Narum, D. L. (2006) Overproduction of Pichia pastoris or Plasmodium falciparum protein disulfide isomerase affects expression, folding and O-linked glycosylation of a malaria vaccine candidate expressed in P. pastoris, J. Biotechnol., 121, 458-470, doi: 10.1016/j.jbiotec.2005.08.025.
  129. Prasanna, M., Podsiadla-Bialoskorska, M., Mielecki, D., Ruffier, N., Fateh, A., Lambert, A., Fanuel, M., Camberlein, E., Szolajska, E., and Grandjean, C. (2021) On the use of adenovirus dodecahedron as a carrier for glycoconjugate vaccines, Glycoconjugate J., 38, 437-446, doi: 10.1007/s10719-021-09999-3.
  130. Astronomo, R. D., Kaltgrad, E., Udit, A. K., Wang, S. K., Doores, K. J., Huang, C. Y., Pantophlet, R., Paulson, J. C., Wong, C. H., Finn, M. G., and Burton, D. R. (2010) Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds, Chem. Biol., 17, 357-370, doi: 10.1016/j.chembiol.2010.03.012.
  131. Sungsuwan, S., Wu, X., and Huang, X. (2017) Evaluation of virus-like particle-based tumor-associated carbohydrate immunogen in a mouse tumor model, Methods Enzymol., 597, 359-376, doi: 10.1016/bs.mie.2017.06.030.
  132. Yin, Z., and Huang, X. (2012) Recent development in carbohydrate based anti-cancer vaccines, J. Carbohydr. Chem., 31, 143-186, doi: 10.1080/07328303.2012.659364.
  133. Li, M., Cripe, T. P., Estes, P. A., Lyon, M. K., Rose, R. C., and Garcea, R. L. (1997) Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly, J. Virol., 71, 2988-2995, doi: 10.1128/jvi.71.4.2988-2995.1997.
  134. Edman, J. C., Hallewell, R. A., Valenzuela, P., Goodman, H. M., and Rutter, W. J. (1981) Synthesis of hepatitis B surface and core antigens in E. coli, Nature, 291, 503-506, doi: 10.1038/291503a0.
  135. Chen, X., Zhou, W., He, Q., Su, B., Zou, Y. (2021) Preparation, purification and identification of bacteriophage Qβ virus-like particles, China Biotechnol., 41, 42-49, doi: 10.13523/j.cb.2103034.
  136. Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R., and Schiller, J. T. (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic, Proc. Natl. Acad. Sci. USA, 89, 12180-12184, doi: 10.1073/pnas.89.24.12180.
  137. Harding, C. M., and Feldman, M. F. (2019) Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli, Glycobiology, 29, 519-529, doi: 10.1093/glycob/cwz031.
  138. Riddle, M. S., Kaminski, R. W., Di Paolo, C., Porter, C. K., Gutierrez, R. L., Clarkson, K. A., Weerts, H. E., Duplessis, C., Castellano, A., Alaimo, C., Paolino, K., Gormley, R., and Gambillara Fonck, V. (2016) Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I study, Clin. Vaccine Immunol., 23, 908-917, doi: 10.1128/cvi.00224-16.
  139. Huttner, A., Hatz, C., van den Dobbelsteen, G., Abbanat, D., Hornacek, A., Frölich, R., Dreyer, A. M., Martin, P., Davies, T., Fae, K., van den Nieuwenhof, I., Thoelen, S., de Vallière, S., Kuhn, A., Bernasconi, E., Viereck, V., Kavvadias, T., Kling, K., Ryu, G., Hülder, T., et al. (2017) Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial, Lancet, 17, 528-537, doi: 10.1016/s1473-3099(17)30108-1.
  140. Kaaijk, P., van Straaten, I., van de Waterbeemd, B., Boot, E. P., Levels, L. M., van Dijken, H. H., and van den Dobbelsteen, G. P. (2013) Preclinical safety and immunogenicity evaluation of a nonavalent PorA native outer membrane vesicle vaccine against serogroup B meningococcal disease, Vaccine, 31, 1065-1071, doi: 10.1016/j.vaccine.2012.12.031.
  141. Королева И. С., Королева М. А. (2021) Мировой опыт применения менингококковых вакцин серогруппы В, Эпидемиология и вакцинопрофилактика, 20, 100-107, doi: 10.31631/2073-3046-2021-20-6-100-107.
  142. Pizza, M., Bekkat-Berkani, R., and Rappuoli, R. (2020) Vaccines against meningococcal diseases, Microorganisms, 8, 1521, doi: 10.3390/microorganisms8101521.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies