Fluorescent conjugates based on prostatic specific membrane antigen ligands as an effective visualization tool for prostate cancer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fluorescent dyes are widely used in histological studies and in intraoperative surgery, including against prostate cancer (PC), which is one of the most common types of cancerous tumors among men today. Targeted delivery of fluorescent conjugates greatly improves diagnostic efficiency and allows for timely correct diagnosis. In the case of PC, the protein marker is prostate specific membrane antigen (PSMA). To date, a large number of diagnostic conjugates targeting PSMA have been created based on modified urea. The review focuses on narrowly targeted conjugates selectively binding to PSMA and answers the following questions. Which fluorescent dyes are already in use in the field of PC diagnosis? What factors influence the structure-activity ratio of the final molecule? What should be considered when selecting a fluorescent tag to create new diagnostic conjugates? And what can be offered in this field to date?

About the authors

A. A Uspenskaia

Faculty of Chemistry, Lomonosov Moscow State University

Email: uspenskaya.n@gmail.com
119991 Moscow, Russia

P. A Krasnikov

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

A. G Majouga

Faculty of Chemistry, Lomonosov Moscow State University;National University of Science and Technology “MISiS”;Dmitry Mendeleev University of Chemical Technology of Russia

119991 Moscow, Russia;119049 Moscow, Russia;125047 Moscow, Russia

E. K Beloglazkina

Faculty of Chemistry, Lomonosov Moscow State University

119991 Moscow, Russia

A. E Machulkin

Faculty of Chemistry, Lomonosov Moscow State University;RUDN University

119991 Moscow, Russia;117198 Moscow, Russia

References

  1. Jones, A. D., and Wilton, J. C. (2017) Can intra-operative fluorescence play a significant role in hepatobiliary surgery? Eur. J. Surg. Oncol., 43, 1622-1627, doi: 10.1016/j.ejso.2017.02.015.
  2. Fei, X., and Gu, Y. (2009) Progress in modifications and applications of fluorescent dye probe, Prog. Nat. Sci., 19, 1-7, doi: 10.1016/j.pnsc.2008.06.004.
  3. Hemmer, E., Benayas, A., Légaré, F., and Vetrone, F. (2016) Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm, Nanoscale Horizons, 1, 168-184, doi: 10.1039/c5nh00073d.
  4. Sung, H., Ferlay, J., Siegel, R. L., and Laversanne, M. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 71, 209-249, doi: 10.3322/caac.21660.
  5. Jackson, P. F., Cole, D. C., Slusher, B. S., Stetz, S. L., Ross, L. E., Donzanti, B. F., and Trainor, D. A. (1996) Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated α-linked acidic dipeptidase, J. Med. Chem., 39, 619-622, doi: 10.1021/jm950801q.
  6. Kozela, E., Wrobel, M., Kos, T., Wojcikowski, J., Daniel, W. A., Wozniak, K. M., Slusher, B. S., and Popik, P. (2005) 2-MPPA, a selective glutamate carboxypeptidase II inhibitor, attenuates morphine tolerance but not dependence in C57/Bl mice, Psychopharmacology (Berl), 183, 275-284, doi: 10.1007/s00213-005-0182-5.
  7. Zhang, A. X., Murelli, R. P., Barinka, C., Michel, J., Cocleaza, A., Jorgensen, W. L., Lubkowski, J., and Spiegel, D. A. (2010) A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules, J. Am. Chem. Soc., 132, 12711-12716, doi: 10.1021/ja104591m.
  8. Barinka, C., Novakova, Z., Hin, N., Bíme, D., Ferraris, D. V., Duvall, B., Kabarriti, G., Tsukamoto, R., Budesinsky, M., Motlova, L., Rojas, C., Slusher, B. S., Rokob, T. A., Rulíšek, L., and Tsukamoto, T. (2019) Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors, Bioorg. Med. Chem., 27, 255-264, doi: 10.1016/j.bmc.2018.11.022.
  9. Barinka, C., Rojas, C., Slusher, B., and Pomper, M. (2012) Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer, Curr. Med. Chem., 19, 856-870, doi: 10.2174/092986712799034888.
  10. Cilibrizzi, A., Wang, J. T.-W., Memdouh, S., Iacovone, A., McElroy, K., Jaffar, N., Young, J. D., Hider, R. C., Blower, P., Al-Jamal, K., and Abbate, V. (2022) PSMA-targeted NIR probes for image-guided detection of prostate cancer, Colloids Surf. B Biointerfaces, 218, 112734, doi: 10.1016/j.colsurfb.2022.112734.
  11. Petrov, S. A., Machulkin, A. E., Uspenskaya, A. A., Zyk, N. Y., Nimenko, E. A., Garanina, A. S., Petrov, R. A., Polshakov, V. I., Grishin, Y. K., Roznyatovsky, V. A., Zyk, N. V., Majouga, A. G., and Beloglazkina, E. K. (2020) Polypeptide-based molecular platform and its docetaxel/sulfo-Cy5-containing conjugate for targeted delivery to prostate specific membrane antigen, Molecules, 25, 5784, doi: 10.3390/molecules25245784.
  12. Liu, T., Jabbes, M., Nedrow-Byers, J. R., Wu, L. Y., Bryan, J. N., and Berkman, C. E. (2011) Detection of prostate-specific membrane antigen on HUVECs in response to breast tumor-conditioned medium, Int. J. Oncol., 38, 1349-1355, doi: 10.3892/ijo.2011.946.
  13. Humblet, V., Lapidus, R., Williams, L. R., Tsukamoto, T., Rojas, C., Majer, P., Hin, B., Ohnishi, S., De Grand, A. M., Zaheer, A., Renze, J. T., Nakayama, A., Slusher, B. S., and Frangioni, J. V. (2005) High-affinity near-infrared fluorescent small-molecule contrast agents for in vivo imaging of prostate-specific membrane antigen, Mol. Imaging, 4, 448-462, doi: 10.2310/7290.2005.05163.
  14. Jing, Y., Cai, M., Zhou, L., Jiang, J., Gao, J., and Wang, H. (2020) Application of an inhibitor-based probe to reveal the distribution of membrane PSMA in dSTORM imaging, Chem. Commun., 56, 13241-13244, doi: 10.1039/D0CC04889E.
  15. Matsuoka, D., Watanabe, H., Shimizu, Y., Kimura, H., Ono, M., and Saji, H. (2021) Synthesis and evaluation of a novel near-infrared fluorescent probe based on succinimidyl-Cys-C(O)-Glu that targets prostate-specific membrane antigen for optical imaging, Bioorg. Med. Chem. Lett., 27, 4876-4880, doi: 10.1016/j.bmcl.2017.09.037.
  16. Ye, S., Zhang, H., Fei, J., Wolstenholme, C. H., and Zhang, X. (2021) A general strategy to control viscosity sensitivity of molecular rotor-based fluorophores, Angew. Chem. Int Ed., 60, 1339-1346, doi: 10.1002/anie.202011108.
  17. Karimi, A., Börner, R., Mata, G., and Luedtke, N. W. (2020) A highly fluorescent nucleobase molecular rotor, J. Am. Chem. Soc., 142, 14422-14426, doi: 10.1021/jacs.0c05180.
  18. Kopka, K., Benešová, M., Bařinka, C., Haberkorn, U., and Babich, J. (2017) Glu-ureido-based inhibitors of prostate-specific membrane antigen: Lessons learned during the development of a novel class of low-molecular-weight theranostic radiotracers, J. Nucl. Med., 58, 17S-26S, doi: 10.2967/jnumed.116.186775.
  19. Zhang, J., Rakhimbekova, A., Duan, X., Yin, Q., Foss, C. A., Fan, Y., Xu, Y., Li, X., Cai, X., Kutil, Z., Wang, P., Yang, Z., Zhang, N., Pomper, M. G., Wang, Y., Bařinka, C., and Yang, X. (2021) A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging, Nat Commun., 12, 5460, doi: 10.1038/s41467-021-25746-6.
  20. Lincoln, R., Bossi, M. L., Remmel, M., D'Este, E., Butkevich, A. N., and Hell, S. W. (2022) A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy, Nat. Chem., 14, 1013-1020, doi: 10.1038/s41557-022-00995-0.
  21. Chen, Y., Dhara, S., Banerjee, S. R., Byun, Y., Pullambhatla, M., Mease, R. C., and Pomper, M. G. (2009) A low molecular weight PSMA-based fluorescent imaging agent for cancer, Biochem. Biophys. Res. Commun., 390, 624-629, doi: 10.1016/j.bbrc.2009.10.017.
  22. Wang, X., Huang, S. S., Heston, W. D. W., Guo, H., Wang, B. C., and Basilion, J. P. (2014) Development of targeted near-infrared imaging agents for prostate cancer, Mol. Cancer Ther., 13, 2595-2606, doi: 10.1158/1535-7163.MCT-14-0422.
  23. Huang, S. S., Wang, X., Zhang, Y., Doke, A., Difilippo, F. P., and Heston, W. D. (2014) Improving the biodistribution of PSMA-targeting tracers with a highly negatively charged linker, Prostate, 74, 702-713, doi: 10.1002/pros.22789.
  24. Tang, W., and Becker, M. L. (2014) "Click" reactions: a versatile toolbox for the synthesis of peptide-conjugates, Chem. Soc. Rev., 43, 7013-7039, doi: 10.1039/c4cs00139g.
  25. Ciuk, A. K., and Lindhorst, T. K. (2015) Synthesis of carbohydrate-scaffolded thymine glycoconjugates to organize multivalency, Beilstein J. Org. Chem., 11, 668-674, doi: 10.3762/bjoc.11.75.
  26. Machulkin, A. E., Uspenskaya, A. A., Ber, A. P., Petrov, S. A., Saltykova, I. V., Ivanenkov, Y. A., Skvortsov, D. A., Erofeev, A. S., Gorelkin, P. V., Beloglazkina, E. K., Belov, E. Iu., Khazanova, E. S., and Majouga, A. G. (2019) Peptide agent comprising a urea derivative based PSMA-binding ligand, a method for preparing the same, and use for producing a conjugate with a drug and diagnostic agent, RF Patent 2697519.
  27. Machulkin, A. E., Shafikov, R. R., Uspenskaya, A. A., Petrov, S. A., Ber, A. P., Skvortsov, D. A., Nimenko, E. A., Zyk, N. U., Smirnova, G. B., Pokrovsky, V. S., Abakumov, M. A., Saltykova, I. V., Akhmirov, R. T., Garanina, A. S., Polshakov, V. I., Saveliev, O. Y., Ivanenkov, Y. A., Aladinskaya, A. V., Finko, A. V., Yamansarov, E. U., Krasnovskaya, O. O., Erofeev, A. S., Gorelkin, P. V., Dontsova, O. A., Beloglazkina, E. K., Zyk, N. V., Khazanova, E. S., and Majouga, A. G. (2021) Synthesis and biological evaluation of PSMA ligands with aromatic residues and fluorescent conjugates based on them, J. Med. Chem., 64, 4532-4552, doi: 10.1021/acs.jmedchem.0c01935.
  28. Weissleder, R. (2001) A clearer vision for in vivo imaging: progress continues in the development of smaller, more penetrable probes for biological imaging, Nat. Biotechnol., 19, 316-317, doi: 10.1038/86684.
  29. Kularatne, S. A., Thomas, M., Myers, C. H., Pravin, G., Kanduluru, A. K., Crian, C. J., and Cichocki, B. N. (2019) Evaluation of novel prostate-specific membrane antigen-targeted near-infrared imaging agent for fluorescence-guided surgery of prostate cancer, Clin. Cancer Res., 25, 177-187, doi: 10.1158/1078-0432.CCR-18-0803.
  30. Kelderhouse, L. E., Chelvam, V., Wayua, C., Mahalingam, S., Poh, S., Kularatne, S. A., and Low, P. S. (2013) Development of tumor-targeted near infrared probes for fluorescence guided surgery, Bioconjug. Chem., 24, 1075-1080, doi: 10.1021/bc400131a.
  31. Raveenthiran, S., Esler, R., Yaxley, J., and Kyle, S. (2019) The use of 68Ga-PET/CT PSMA in the staging of primary and suspected recurrent renal cell carcinoma, Eur. J. Nucl. Med. Mol. Imaging, 46, 2280-2288, doi: 10.1007/s00259-019-04432-2.
  32. Salas Fragomeni, R. A., Amir, T., Sheikhbahaei, S., Harvey, S. C., Javadi, M. S., Solnes, M. B., Kiess, A. P., Allaf, M. E., Pomper, M. G., Gorin, M. A., and Rowe, S. P. (2018) Imaging of nonprostate cancers using PSMA-targeted radiotracers: rationale, current state of the field, and a call to arms, J. Nucl. Med., 59, 871-877, doi: 10.2967/jnumed.117.203570.
  33. Kellogg, R. E., and Bennett, R. G. (1964) Radiationless intermolecular energy transfer. III. Determination of phosphorescence efficiencies, J. Chem. Phys., 41, 3042-3045, doi: 10.1063/1.1725672.
  34. Derks, Y. H. W., Rijpkema, M., Amatdjais-Groenen, H. I. V., Loeff, C. C., Roode, K. E., Kip, A., Laverman, P., Lüthe, S., Heskamp, S., and Löwik, D. W. P. M. (2022) Strain-promoted azide-alkyne cycloaddition-based PSMA-targeting ligands for multimodal intraoperative tumor detection of prostate cancer, Bioconjug. Chem., 33, 194-205, doi: 10.1021/acs.bioconjchem.1c00537.
  35. Baranski, A. C., Schäfer, M., Bauder-Wüst, U., Roscher, M., Schmidt, J., Stenau, E., Simpfendörfer, T., Teber, D., Maier-Hein, L., Hadaschik, B., Haberkorn, U., Eder, M., and Kopka, K. (2018) PSMA-11-derived dual-labeled PSMA inhibitors for preoperative PET imaging and precise fluorescence-guided surgery of prostate cancer, J. Nucl. Med., 59, 639-645, doi: 10.2967/jnumed.117.201293.
  36. Kommidi, H., Guo, H., Nurili, F., Vedvyas, Y., Jin, M. M., McClure, T. D., Ehdaie, B., Sayman, H. B., Akin, O., Aras, O., and Ting, R. (2018) 18F-Positron emitting/trimethine cyanine-fluorescent contrast for image-guided prostate cancer management, J. Med. Chem., 61, 4256-4262, doi: 10.1021/acs.jmedchem.8b00240.
  37. Aras, O., Demirdag, C., Kommidi, H., Guo, H., Pavlova, I., Aygun, A., Karayel, E., Pehlivanoglu, H., Yeyin, N., Kyprianou, N., Chen, N., Harmsen, S., Sonmezoglu, K., Lundon, D. J., Oklu, R., Ting, R., Tewari, A., Akin, O., and Sayman, H. B. (2021) Small molecule, multimodal, [18F]-PET and fluorescence imaging agent targeting prostate-specific membrane antigen: first-in-human study, Clin. Genitourin. Cancer, 19, 405-416, doi: 10.1016/j.clgc.2021.03.011.
  38. Aras, O., Demirdag, C., Kommidi, H., Pavlova, I., Boyko, V., Lundon, D. J., Ting, R., Tewari, A., Akin, O., and Sayman, H. B. (2021) Simultaneous injection of 18F-BF3-Cy3-ACUPA and non-radioactive Cy7-ACUPA probes: a promising pre-biopsy PET and ex vivo fluorescence imaging approach to evaluate prostate cancer, Eur. J. Nucl. Med. Mol. Imaging, 48, 3732-3733, doi: 10.1007/s00259-021-05344-w.
  39. Derks, Y. H. W., van Lith, S. A. M., Amatdjais-Groenen, H. I. V., Wouters, L. W. M., Kip, A., Franssen, G. M., Laverman, P., Löwik, D. W. P. M., Heskamp, S., and Rijpkema, M. (2022) Theranostic PSMA ligands with optimized backbones for intraoperative multimodal imaging and photodynamic therapy of prostate cancer, Eur. J. Nucl. Med. Mol. Imaging, 49, 2425-2435, doi: 10.1007/s00259-022-05685-0.
  40. Uspenskaya, A. A., Nimenko, E. A., Machulkin, A. E., Beloglazkina, E. K., and Majouga, A. G. (2021) The importance of linkers in the structure of PSMA ligands, Curr. Med. Chem., 28, 1-31, doi: 10.2174/0929867328666210804092200.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies