Methionine addiction of cancer cells targeted by methioninase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

All types of cancer are addicted to methionine, which is known as the “Hoffman effect”. Restricting methionine inhibits the growth and proliferation of all tested types of cancer cells, while normal cells are unaffected. Methionine addiction is targeted with methioninase (METase), which has been shown to be effective and safe as a therapy for all types of cancer cells and animal cancer models, either alone or in combination with common cancer medications. Approximately six years ago, researchers developed a rMETase that may be taken orally as a supplement and has resulted in anecdotal positive results in patients with advanced cancer. Currently, there are 8 clinical studies on METase, including 2 from the 1990s and 6 more recent ones. This review focuses on the clinical studies of METase-mediated methionine restriction, specifically the oral dosage form of rMETase as a supplement alone or in combination with common chemotherapeutic agents in the treatment of patients with advanced cancer.

About the authors

V. S Pokrovsky

N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation;Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University);Sirius University of Science and Technology

Email: v.pokrovsky@ronc.ru
115478 Moscow, Russia;117198 Moscow, Russia;354340 Sochi, Russia

L. Abo qoura

N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation;Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University)

Email: louay.ko@gmail.com
115478 Moscow, Russia;117198 Moscow, Russia

E. A Demidova

N. N. Blokhin National Medical Research Center of Oncology of Ministry of Health of Russian Federation

115478 Moscow, Russia

Q. Han

AntiCancer Inc

San Diego, CA 92111, USA

R. M Hoffman

AntiCancer Inc;University of California

Email: all@anticancer.com
San Diego, CA 92111, USA;San Diego, La Jolla, CA 92037-7400, USA

References

  1. Sugimura, T., Birnbaum, S. M., Winitz, M., and Greenstein, J. P. (1959) Quantitative nutritional studies with water-soluble, chemically defined diets. VIII. The forced feeding of diets each lacking in one essential amino acid, Arch. Biochem. Biophys., 81, 448-455, doi: 10.1016/0003-9861(59)90225-5.
  2. Hoffman, R. M., and Erbe, R. W. (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine, Proc. Natl. Acad. Sci. USA, 73, 1523-1527, doi: 10.1073/pnas.73.5.1523.
  3. Kaiser, P. (2020) Methionine dependence of cancer, Biomolecules, 10, 568, doi: 10.3390/biom10040568.
  4. Coalson, D. W., Mecham, J. O., Stern, P. H., and Hoffman, R. M. (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells, Proc. Natl. Acad. Sci. USA, 79, 4248-4251, doi: 10.1073/pnas.79.14.4248.
  5. Stern, P. H., and Hoffman, R. M. (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors, In Vitro, 20, 663-670, doi: 10.1007/BF02619617.
  6. Stern, P. H., Mecham, J. O., Wallace, C. D., and Hoffman, R. M. (1983) Reduced free-methionine in methionine-dependent SV40-transformed human fibroblasts synthesizing apparently normal amounts of methionine, J. Cell. Physiol., 117, 9-14, doi: 10.1002/jcp.1041170103.
  7. Singhal, T., Narayanan, T. K., Jacobs, M. P., Bal, C., and Mantil, J. C. (2012) 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI, J. Nucl. Med., 53, 1709-1715, doi: 10.2967/jnumed.111.102533.
  8. Tisdale, M. J. (1980) Effect of methionine deprivation on methylation and synthesis of macromolecules, Br. J. Cancer, 42, 121-128, doi: 10.1038/bjc.1980.210.
  9. Hoffman, R. M. (1984) Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis, Biochim. Biophys. Acta BBA Rev. Cancer, 738, 49-87, doi: 10.1016/0304-419X(84)90019-2.
  10. Hoffman, R. M., Coalson, D. W., Jacobsen, S. J., and Erbe, R. W. (1981) Folate polyglutamate and monoglutamate accumulation in normal and SV40-transformed human fibroblasts, J. Cell. Physiol., 109, 497-505, doi: 10.1002/jcp.1041090316.
  11. Epner, D. E., Morrow, S., Wilcox, M., and Houghton, J. L. (2002) Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction, Nutr. Cancer, 42, 158-166, doi: 10.1207/S15327914NC422_2.
  12. Hoshiya, Y., Guo, H., Kubota, T., Inada, T., Asanuma, F., Yamada, Y., Koh, J., Kitajima, M., Hoffman, R. M. (1995) Human tumors are methionine dependent in vivo, Anticancer Res., 15, 717-718.
  13. Tan, Y., Xu, M., Tan, X., Tan, X., Wang, X., Saikawa, Y., Nagahama, T., Sun, X., Lenz, M., and Hoffman, R. M. (1997) Overexpression and large-scale production of recombinant L-methionine-α-deamino-γ-mercaptomethane-lyase for novel anticancer therapy, Protein Expr. Purif., 9, 233-245, doi: 10.1006/prep.1996.0700.
  14. Stern, P. H., and Hoffman, R. M. (1986) Enhanced in vitro selective toxicity of chemotherapeutic agents for human cancer cells based on a metabolic defect, J. Natl. Cancer Inst., 76, 629-639, doi: 10.1093/jnci/76.4.629.
  15. Kubota, Y., Han, Q., Hamada, K., Aoki, Y., Masaki, N., Obara, K., Tsunoda, T., and Hoffman, R. M. (2022) Long-term stable disease in a rectal-cancer patient treated by methionine restriction with oral recombinant methioninase and a low-methionine diet, Anticancer Res., 42, 3857-3861, doi: 10.21873/anticanres.15877.
  16. Kubota, Y., Han, Q., Hozumi, C., Masaki, N., Yamamoto, J., Aoki, Y., Tsunoda, T., and Hoffman, R. M. (2022) Stage IV pancreatic cancer patient treated with FOLFIRINOX combined with oral methioninase: a highly-rare case with long-term stable disease, Anticancer Res., 42, 2567-2572, doi: 10.21873/anticanres.15734.
  17. Kubota, Y., Han, Q., Masaki, N., Hozumi, C., Hamada, K., Aoki, Y., Obara, K., Tsunoda, T., and Hoffman, R. M. (2022) Elimination of axillary-lymph-node metastases in a patient with invasive lobular breast cancer treated by first-line neo-adjuvant chemotherapy combined with methionine restriction, Anticancer Res., 42, 5819-5823, doi: 10.21873/anticanres.16089.
  18. Han, Q., and Hoffman, R. M. (2021) Chronic treatment of an advanced prostate-cancer patient with oral methioninase resulted in long-term stabilization of rapidly rising PSA levels, In Vivo, 35, 2171-2176, doi: 10.21873/invivo.12488.
  19. Han, Q., and Hoffman, R. M. (2021) Lowering and stabilizing PSA levels in advanced-prostate cancer patients with oral methioninase, Anticancer Res., 41, 1921-1926, doi: 10.21873/anticanres.14958.
  20. Han, Q., Tan, Y., and Hoffman, R. M. (2020) Oral dosing of recombinant methioninase is associated with a 70% drop in PSA in a patient with bone-metastatic prostate cancer and 50% reduction in circulating methionine in a high-stage ovarian cancer patient, Anticancer Res., 40, 2813-2819, doi: 10.21873/anticanres.14254.
  21. Cantoni, G. L. (1975) Biological methylation: selected aspects, Annu. Rev. Biochem., 44, 435-451, doi: 10.1146/annurev.bi.44.070175.002251.
  22. Hoffman, R. M. (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey, Expert Opin. Biol. Ther., 15, 21-31, doi: 10.1517/14712598.2015.963050.
  23. Pokrovsky, V. S., Abo Qoura, L., Morozova, E., and Bunik, V. I. (2022) Predictive markers for efficiency of the amino-acid deprivation therapies in cancer, Front. Med., 9, 1035356, doi: 10.3389/fmed.2022.1035356.
  24. Mecham, J. O., Rowitch, D., Wallace, C. D., Stern, P. H., and Hoffman, R. M. (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines, Biochem. Biophys. Res. Commun., 117, 429-434, doi: 10.1016/0006-291X(83)91218-4.
  25. Tan, Y., Xu, M., and Hoffman, R. M. (2010) Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro, Anticancer Res., 30, 1041-1046.
  26. Yamamoto, J., Han, Q., Inubushi, S., Sugisawa, N., Hamada, K., Nishino, H., Miyake, K., Kumamoto, T., Matsuyama, R., Bouvet, M., Endo, I., and Hoffman, R. M. (2020) Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells, Biochem. Biophys. Res. Commun., 533, 1034-1038, doi: 10.1016/j.bbrc.2020.09.108.
  27. Yamamoto, J., Inubushi, S., Han, Q., Tashiro, Y., Sugisawa, N., Hamada, K., Aoki, Y., Miyake, K., Matsuyama, R., Bouvet, M., Clarke, S. G., Endo, I., and Hoffman, R. M. (2020) The linkage of methionine addiction, overmethylation of histone H3 lysines and malignancy demonstrated when cancer cells revert to methionine-independence, bioRxiv, doi: 10.1101/2020.12.04.412437.
  28. Wang, Z., Yip, L. Y., Lee, J. H. J., Wu, Z., Chew, H. Y., Chong, P. K. W., Teo, C. C., Ang, H. Y., Peh, K. L. E., Yuan, J., Ma, S., Choo, L. S. K., Basri, N., Jiang, X., Yu, Q., Hillmer, A. M., Lim, W. T., Lim, T. K. H., Takano, A., Tan, E. H., Tan, D. S. W., Ho, Y. S., Lim, B., and Tam, W. L. (2019) Methionine is a metabolic dependency of tumor-initiating cells, Nat. Med., 25, 825-837, doi: 10.1038/s41591-019-0423-5.
  29. Kubota, Y., Sato, T., Hozumi, C., Han, Q., Aoki, Y., Masaki, N., Obara, K., Tsunoda, T., and Hoffman, R. M. (2023) Superiority of [11C] methionine over [18F] deoxyglucose for PET imaging of multiple cancer types due to the methionine addiction of cancer, Int. J. Mol. Sci., 24, 1935, doi: 10.3390/ijms24031935.
  30. Bloomfield, M., and Duesberg, P. (2016) Inherent variability of cancer-specific aneuploidy generates metastases, Mol. Cytogenet., 9, 90, doi: 10.1186/s13039-016-0297-x.
  31. Hoffman, R. M., and Jacobsen, S. J. (1980) Reversible growth arrest in simian virus 40-transformed human fibroblasts, Proc. Natl. Acad. Sci. USA, 77, 7306-7310, doi: 10.1073/pnas.77.12.7306.
  32. Yamamoto, J., Han, Q., Simon, M., Thomas, D., and Hoffman, R. M. (2022) Methionine restriction: ready for prime time in the cancer clinic? Anticancer Res., 42, 641-644, doi: 10.21873/anticanres.15521.
  33. Tanaka, H., Esaki, N., and Soda, K. (1985) A versatile bacterial enzyme: l-methionine γ-lyase, Enzyme Microb. Technol., 7, 530-537, doi: 10.1016/0141-0229(85)90094-8.
  34. Tan, Y., Zavala, J., Han, Q., Xu, M., Sun, X., Tan, X., Tan, X., Magana, R., Geller, J., and Hoffman, R. M. (1997) Recombinant methioninase infusion reduces the biochemical endpoint of serum methionine with minimal toxicity in high-stage cancer patients, Anticancer Res., 17, 3857-3860.
  35. Hoffman, R. M. (2017) Is DNA methylation the new guardian of the genome? Mol. Cytogenet., 10, 11, doi: 10.1186/s13039-017-0314-8.
  36. Kreis, W., and Hession, C. (1973) Biological effects of enzymatic deprivation of L-methionine in cell culture and an experimental tumor, Cancer Res., 33, 1866-1869.
  37. Higuchi, T., Kawaguchi, K., Miyake, K., Han, Q., Tan, Y., Oshiro, H., Sugisawa, N., Zhang, Z., Razmjooei, S., Yamamoto, N., Hayashi, R., Kimura, H., Miwa, S., Igarashi, K., Chawla, S. P., Singh, A. S., Eilber, F. C., Singh, S. R., Tsuchiya, H., and Hoffman, R. M. (2018) Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model, Anticancer Res., 38, 5639-5644, doi: 10.21873/anticanres.12899.
  38. Higuchi, T., Oshiro, H., Miyake, K., Sugisawa, N., Han, Q., Tan, Y., Park, J., Zhang, Z., Razmjooei, S., Yamamoto, N., Hayashi, K., Kimura, H., Miwa, S., Igarashi, K., Bouvet, M., Chawla, S. P., Singh, S. R., Tsuchiya, H., and Hoffman, R. M. (2019) Oral recombinant methioninase, combined with oral caffeine and injected cisplatinum, overcome cisplatinum-resistance and regresses patient-derived orthotopic xenograft model of osteosarcoma, Anticancer Res., 39, 4653-4657, doi: 10.21873/anticanres.13646.
  39. Higuchi, T., Sugisawa, N., Yamamoto, J., Oshiro, H., Han, Q., Yamamoto, N., Hayashi, K., Kimura, H., Miwa, S., Igarashi, K., Tan, Y., Kuchipudi, S., Bouvet, M., Singh, S. R., Tsuchiya, H., and Hoffman, R. M. (2020) The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model, Cancer Chemother. Pharmacol., 85, 285-291, doi: 10.1007/s00280-019-03986-0.
  40. Kawaguchi, K., Han, Q., Li, S., Tan, Y., Igarashi, K., Kiyuna, T., Miyake, T., Miyake, M., Chmielowski, B., Nelson, S. D., Russell, T. A., Dry, S. A., Li, Y., Singh, A. S., Eckardt, M. A. R., Unno, M., Eilber, F. C., and Hoffman, R. M.(2018) Targeting methionine with oral recombinant methioninase (o-rMETase) arrests a patient-derived orthotopic xenograft (PDOX) model of BRAF-V600E mutant melanoma: implications for chronic clinical cancer therapy and prevention, Cell Cycle, 17, 356-361, doi: 10.1080/15384101.2017.1405195.
  41. Kawaguchi, K., Han, Q., Li, S., Tan, Y., Igarashi, K., Murakami, T., Unno, M., and Hoffman, R. M. (2019) Efficacy of recombinant methioninase (rMETase) on recalcitrant cancer patient-derived orthotopic xenograft (PDOX) mouse models: a review, Cells, 8, 410, doi: 10.3390/cells8050410.
  42. Kawaguchi, K., Higuchi, T., Li, S., Han, Q., Tan, Y., Igarashi, K., Zhao, M., Miyake, K., Kiyuna, T., Miyake, M., Ohshiro, H., Sugisawa, N., Zhang, Z., Razmjooei, S., Wangsiricharoen, S., Chmielowski, B., Nelson, S. D., Russell, T. A., Dry, S. M., Li, Y., and Hoffman, R. M. (2018) Combination therapy of tumor-targeting Salmonella typhimurium A1-R and oral recombinant methioninase regresses a BRAF-V600E-negative melanoma, Biochem. Biophys. Res. Commun., 503, 3086-3092, doi: 10.1016/j.bbrc.2018.08.097.
  43. Kawaguchi, K., Miyake, K., Han, Q., Li, S., Tan, S., Igarashi, K., Kiyuna, K., Miyake, M., Higuchi, T., Oshiro, H., Zhang, Z., Razmjooei, S., Wangsiricharoen, S., Bouvet, M., Singh, S. R., Unno, M., and Hoffman, R. M. (2018) Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer, Cancer Lett., 432, 251-259, doi: 10.1016/j.canlet.2018.06.016.
  44. Yoshioka, T., Wada, T., Uchida, N., Maki, H., Yoshida, H., Ide, N., Kasai, H., Hojo, K., Shono, K., Maekawa, R., Yagi, S., Hoffman, R. M., and Sugita, K. (1998) Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase, Cancer Res., 58, 2583-2587.
  45. Oshiro, H., Tome, Y., Kiyuna, T., Yoon, S. N., Lwin, T. M., Han, Q., Tan, Y., Miyake, K., Higuchi, T., Sugisawa, N., Katsuya, Y., Park, J. H., Zang, Z., Razmjooei, S., Bouvet, M., Clary, B., Singh, S. R., Kanaya, F., Nishida, F., and Hoffman, R. M. (2019) Oral recombinant methioninase overcomes colorectal-cancer liver metastasis resistance to the combination of 5-fluorouracil and oxaliplatinum in a patient-derived orthotopic xenograft mouse model, Anticancer Res., 39, 4667-4671, doi: 10.21873/anticanres.13648.
  46. Morozova, E. A., Kulikova, V. V., Yashin, D. V., Anufrieva, N. V., Anisimova, N. Y., Revtovich, S. V., Kotlov, M. I., Belyi, Y. F., Pokrovsky, V. S., and Demidkina, T. V. (2013) Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii, Acta Naturae, 5, 92-98, doi: 10.32607/20758251-2013-5-3-92-98.
  47. Morozova, E. A., Anufrieva, N. V., Davydov, D. Zh., Komarova, M. V., Dyakov, I. N., Rodionov, A. N., Demidkina, T. V., and Pokrovsky, V. S. (2017) Plasma methionine depletion and pharmacokinetic properties in mice of methionine γ-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes, Biomed. Pharmacother, 88, 978-984, doi: 10.1016/j.biopha.2017.01.127.
  48. Pokrovsky, V. S., Anisimova, N. Y., Davydov, D. Zh., Bazhenov, S. V., Bulushova, N. V., Zavilgelsky, G. B., Kotova, V. Y., and Manukhov, I. V. (2019) Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts, Invest. New Drugs, 37, 201-209, doi: 10.1007/s10637-018-0619-4.
  49. Pokrovsky, V. S., Chepikova, O. E., Davydov, D. Zh., Zamyatnin, A. A., Lukashev, A. N., and Lukasheva, E. V. (2019) Amino acid degrading enzymes and their application in cancer therapy, Curr. Med. Chem., 26, 446-464, doi: 10.2174/0929867324666171006132729.
  50. Yang, Z., Wang, J., Yoshioka, T., Li, B., Lu, Q., Li, S., Sun, X., Tan, Y., Yagi, S., Frenkel, E. P., and Hoffman, R. M. (2004) Pharmacokinetics, methionine depletion, and antigenicity of recombinant methioninase in primates, Clin. Cancer Res., 10, 2131-2138, doi: 10.1158/1078-0432.CCR-03-0068.
  51. Tan, Y., Zavala, J., Xu, M., Zavala, J., and Hoffman, R. M. (1996) Serum methionine depletion without side effects by methioninase in metastatic breast cancer patients, Anticancer Res., 16, 3937-3942.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies