The Current Trophic State and Water Quality of Lake Onego

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The trophic state and water quality of Lake Onegо were assessed under climate warming and changes in anthropogenic load over the past 30 years. The water body retains its natural oligotrophic state during the summer stratification according to the concentration of chlorophyll a. A small amount of readily mineralizable organic matter in water determines the low level of development of saprophytic bacteria, corresponding to xenosaprobic and β-oligosaprobic waters. Only the Kondopogskaya Bay of Lake Onego is characterized by a higher level of trophy (mesotrophic) and water saprobity (β-mesosaprobic) due to pollution by wastewater from the pulp and paper mill and waste from trout farms. Local “bloom” of cyanobacteria of in the open area of the lake was observed during the anomalous heating of the epilimnion in the summer of 2022 for the first time in the 50-year history of research. The increase in the concentration of humic substances in the water of the bays as a result of climate warming at this stage did not lead to a change in the level of saprophytic bacteria.

About the authors

E. V. Tekanova

Northern Water Problems Institute, Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: etekanova@mail.ru
Russia, Republic of Karelia, Petrozavodsk

N. M. Kalinkina

Northern Water Problems Institute, Karelian Research Centre of the Russian Academy of Sciences

Email: etekanova@mail.ru
Russia, Republic of Karelia, Petrozavodsk

E. M. Makarova

Northern Water Problems Institute, Karelian Research Centre of the Russian Academy of Sciences

Email: etekanova@mail.ru
Russia, Republic of Karelia, Petrozavodsk

V. S. Smirnova

Northern Water Problems Institute, Karelian Research Centre of the Russian Academy of Sciences

Email: etekanova@mail.ru
Russia, Republic of Karelia, Petrozavodsk

References

  1. Водоросли, вызывающие “цветение” водоемов Северо-Запада России. 2006. М.: Тов-во науч. изд. КМК.
  2. Диагноз и прогноз термогидродинамики и экосистем великих озер России. 2020. Петрозаводск: Карельск. науч. центр РАН.
  3. Калинкина Н.М., Теканова Е.В., Ефремова Т.В. и др. 2021. Реакция экосистемы Онежского озера в весенне-летний период на аномально высокую температуру воздуха зимы 2019/2020 годов // Изв. РАН. Сер. геогр. Т. 85. № 6. С. 888. https://doi.org/10.31857/S2587556621060078
  4. Калинкина Н.М., Теканова Е.В., Сабылина А.В., Рыжаков А.В. 2019. Изменения гидрохимического режима Онежского озера с начала 1990-х годов // Изв. РАН. Сер. геогр. № 1. С. 62. https://doi.org/10.31857/S2587-55662019162-72
  5. Китаев С.П. 1984. Экологические основы биопродуктивности озер разных природных зон. М.: Наука.
  6. Кузнецов С.И., Дубинина Г.А. 1989. Методы изучения водных микроорганизмов. М.: Наука.
  7. Оксиюк О.П., Жукинский В.Н., Брагинский Л.П. и др. 1993. Комплексная экологическая классификация поверхностных вод суши // Гидробиол. журн. Т. 29. № 4. С. 62.
  8. Пислегина Е.В., Щапов К.С., Изместьева Л.Р. 2011. Влияние ветров на обилие планктона в период прямой термической стратификации 2009 г. в Южном Байкале (р-н пос. Большие Коты) // Изв. Иркутского гос. ун-та. Сер. Биология. Экология. Т. 4. № 1. С. 67.
  9. Сярки М.Т., Фомина Ю.Ю. 2019. Зоопланктон Онежского озера, его центрального плеса и залива большое Онего в различные по температурному режиму годы // Тр. Карельск. науч. центра РАН. № 9. С. 104. https://doi.org/10.17076/lim982
  10. Теканова Е.В. 2012. Вклад первичной продукции в содержание органического углерода в Онежском озере // Биология внутр. вод. № 4. С. 38.
  11. Толомеев А.П., Дубовская О.П., Кравчук Е.С. и др. 2023. Горизонтальные неоднородности функционирования фито- и зоопланктона в озере с ветровыми течениями // Биология внутр. вод. № 2. С. 196. https://doi.org/10.31857/S0320965223020249
  12. Федоров В.Д. 1979. О методах изучения фитопланктона и его активности. М.: Наука.
  13. Экосистема Онежского озера и тенденции ее изменения. 1990. Л.: Наука.
  14. Bondarenko N.A., Ozersky T., Obolkina L.A. et al. 2019. Recent changes in the spring microplankton of Lake Baikal, Russia // Limnologica. V. 75. P. 19. https://doi.org/10.1016/j.limno.2019.01.002
  15. Hampton S.E., Gray D.K., Izmest’eva L.R. et al. 2014. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia // PLoS ONE. V. 9(2). e88920. https://doi.org/10.1371/journal.pone.0088920
  16. Izmest’eva L.R., Moore M.V., Hampton S.E. et al. 2016. Lake-wide physical and biological trends associated with warming in Lake Baikal // J. Great Lakes Res. V. 42. P. 6. https://doi.org/10.1016/j.jglr.2015.11.006
  17. Jenny J.-Ph., Anneville O., Arnaud F. et al. 2020. Scientists’ Warning to Humanity: Rapid degradation of the world’s large lakes // J. Great Lakes Res. V. 46 P. 686. https://doi.org/ 0380-1330/ 2020https://doi.org/10.1016/j.jglr.2020.05.006
  18. Kalinkina N., Tekanova E., Korosov A. et al. 2020. What is the extent of water brownification in Lake Onego, Russia? // J. Great Lakes Res. V. 46. Iss. 4. P. 850. https://doi.org/10.1016/j.jglr.2020.02.008
  19. Niinemets Ü., Kahru A., Mander Ü. et al. 2017. Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation, and scalin // Reg. Environ. Change. V. 17. P. 2061. https://doi.org/10.1007/s10113-017-1196-3
  20. North R.P., Livingstone D.M., Hari R.E. et al. 2013. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes // Inland Waters. V. 3. P. 341. https://doi.org/10.5268/IW-3.3.560
  21. O’Reilly C.M., Sharma S., Gray D.K. et al. 2015. Rapid and highly variable warming of lake surface waters around the globe // Geoph. Res. Letters. V. 42. P. 10773. https://doi.org/10.1002/2015GL066235
  22. Reavie E.D., Barbiero R.P., Allinger L.E., Warrenc G.J. 2014. Phytoplankton trends in the Great Lakes, 2001–2011 // J. Great Lakes Res. V. 40. P. 618. https://doi.org/10.1016/j.jglr.2014.04.013
  23. SCOR-UNESCO Working Group № 17. 1966. Determination of photosynthetic pigments in sea water // Monographs on oceanographic methodology, 1. Paris: UNESCO.
  24. Shimoda Y., Azim M.E., Perhar G. et al. 2011. Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes? // J. Great Lakes Res. V. 37. P. 173. https://doi.org/10.1016/j.jglr.2010.10.004
  25. Søndergaard M., Moss B. 1997. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes // The structuring role of submerged macrophytes in lakes. V. 131. N.Y.: Springer. P. 115.
  26. Tikkanen T. Kasviplanktonopas. 1986. Helsinki: Suomen Luonnonsuojelun Tuki Oy.
  27. Tranvik L.J. 1998. Degradation of dissolved organic matter in humic waters by bacteria // Aquatic humic substances. Ecology and Biogeochemistry. Berlin: Springer. P. 259. https://doi.org/10.1007/978-3-662-03736-2_11
  28. Winder M., Reuter J.E., Schladow S.G. 2009. Lake warming favours small-sized planktonic diatom species // Proc. R. Soc. B. V. 276. P. 427. https://doi.org/10.1098/rspb.2008.1200
  29. Winder M., Schindler D. 2004. Climatic effects on the phenology of lake processes // Global Change Biol. Iss. 10. P. 1844. https://doi.org/10.1111/j.1365-2486.2004.00849.x
  30. Woolway R.I., Merchant C.J. 2018. Intralake heterogeneity of thermal responses to climate change: A study of large Northern Hemisphere lakes // J. Geoph. Res.: Atmospheres. V. 123. P. 3087. https://doi.org/10.1002/2017JD027661
  31. Zobkov M., Zobkova M., Galakhina N. et al. 2022. Data on the chemical composition of Lake Onego water in 2019–2021 // Data in Brief. Available online. Accepted 15 March 2022. https://doi.org/10.1016/j.dib.2022.108079

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)

Copyright (c) 2023 Е.В. Теканова, Н.М. Калинкина, Е.М. Макарова, В.С. Смирнова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies