Responses of Unio pictorum to the Presence of Toxic and Non-Toxic Strains of Microcystis aeruginosa

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In order to assess the impact of cyanobacteria on mollusks under experimental conditions, the interaction of toxic and non-toxic strains of cyanobacteria Microcystis aeruginosa (Kützing) Kützing and bivalve mollusks Unio pictorum (L., 1758) was studied. Cyanobacteria have a negative effect on bivalve mollusks: 40% death of mollusks and deterioration of their adaptive capacity were recorded when co-cultivated with M. aeruginosa at a high cell concentration. At the same time, there was no difference in the mortality of mollusks incubated with toxic and non-toxic cyanobacteria. A decrease in the content of microcystin LR in the presence of bivalves was revealed. No statistically significant increase in the number of cyanobacteria in the water was noted after transit passage through the digestive system of bivalves.

About the authors

A. N. Sharov

Papanin Institute for Biology of Inland Waters Russian Academy of Sciences; AquaBioSafe, Tyumen State University; St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological
Safety of the Russian Academy of Sciences

Author for correspondence.
Email: sharov@ibiw.ru
Russia, Nekouzskii raion, Yaroslavl oblast, Borok; Russia, Tyumen; Russia, St. Petersburg

T. B. Zaytseva

St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological
Safety of the Russian Academy of Sciences

Email: sharov@ibiw.ru
Russia, St. Petersburg

N. G. Medvedeva

St. Petersburg Federal Research Center of the Russian Academy of Sciences, Scientific Research Centre for Ecological
Safety of the Russian Academy of Sciences

Email: sharov@ibiw.ru
Russia, St. Petersburg

References

  1. Алимов А.Ф. 1981. Функциональная экология пресноводных двустворчатых моллюсков. Л.: Наука.
  2. Березина Н.А., Тиунов А.В., Цуриков С.М. и др. 2021. Цианобактерии как источник питания беспозвоночных: результаты модельного эксперимента // Экология. № 3. С. 234. https://doi.org/10.31857/S0367059721030033
  3. Вербицкий В.Б., Курбатова С.А., Березина Н.А. и др. 2019. Реакции водных организмов на присутствие цианобактерий и элодеи в микрокосмах // Докл. АН. Т. 488. № 1. С. 595.
  4. Колмаков В.И., Гладышев М.И. 2003. Концептуальная диверсикология – новый раздел теоретической экологии // Гидробиол. журн. Т. 39. № 4. С.111.
  5. Колмаков В.И. 2014. Роль прижизненного прохождения Microcystis aeruginosa через пищеварительные тракты животных-фильтраторов в эвтрофных водоемах (обзор) // Сиб. экол. журн. № 4. С. 601.
  6. Комендантов А.Ю., Хлебович В.В., Аладин Н.В. 1985. Особенности осмотической и ионной регуляции двустворчатых моллюсков в зависимости от факторов среды // Экология. № 5. С. 35.
  7. Остроумов С.А. 2008. Гидробионты в самоочищении вод и биогенной миграции элементов. М. МАКСПресс. 200 с.
  8. Холодкевич С.В., Шаров А.Н., Чуйко Г.М. и др. 2019. Оценка качества пресноводных экосистем по функциональному состоянию двустворчатых моллюсков // Вод. ресурсы. № 2. С. 214. https://doi.org/10.31857/S0321-0596462214-224
  9. Холодкевич С.В., Чуйко Г.М., Шаров А.Н. и др. 2021. Показатели кардиоактивности и оксидативного стресса моллюска Anodonta cygnea при краткосрочной соленосной тест-нагрузке как биомаркеры для оценки состояния организма и качества среды обитания // Биология внутр. вод. № 6. С. 599. https://doi.org/10.31857/S0320965221060085
  10. Bakhmet I.N. 2017. Cardiac activity and oxygen consumption of blue mussels (Mytilus edulis) from the White Seain relation to body mass, ambient temperature and food availability // Polar Biol. V. 40. P. 1959. https://doi.org/10.1007/s00300-017-2111-6
  11. Berezina N.A. 2003. Tolerance of freshwater invertebrates to changes in water salinity // Russ. J. Ecol. V. 34. № 4. P. 261. https://doi.org/10.1023/A:1024597832095
  12. Berezina N.A., Maximov A.A., Umnova L.P. et al. 2017. Excretion by benthic invertebrates as important source of phosphorus in oligotrophic ecosystem (Lake Krivoe, northern Russia) // J. Sib. Fed. Univ., Biol., V. 10. № 4. P. 485. https://doi.org/10.17516/1997-1389-0046
  13. Berezina N.A., Verbitsky V.B., Sharov A.N., Chernova E. 2020. Biomarkers in bivalve mollusks and amphipods for assessment of effects linked to cyanobacteria and elodea: Mesocosm study // Ecotoxicol. Environ. Saf. V. 203. P. 110994. https://doi.org/10.1016/j.ecoenv.2020.110994
  14. Boegehold A.G., Johnson N.S., Kashian D.R. 2019. Dreissenid (quagga and zebra mussel) veligers are adversely affected by bloom forming cyanobacteria // Ecotoxicol. Environ. Saf. V. 182. P. 109426. https://doi.org/10.1016/j.ecoenv.2019.109426
  15. Bownik A. 2013. Effects of cyanobacterial toxins, microcystins on freshwater invertebrates // Pol. J. Natur. Sci. V. 28. № 2. P. 185.
  16. Burnett N.P., Seabra R., De Pirro M., Davis S.W. 2013. An improved noninvasive method for measuring heartbeat of intertidal animals // Limnol. Oceanogr. Methods. V. 11. P. 91. https://doi.org/10.4319/lom.2013.11.91
  17. Davis T.W., Gobler C.J. 2010. Grazing by mesozooplankton and microzooplankton on toxic and non-toxic strains of Microcystis in the Transquaking River, a tributary of Chesapeake Bay // J. Plankton Res. V. 33. № 3. P. 415. https://doi.org/10.1093/plankt/fbq109
  18. Depledge M.H., Aagaard A., Gyorkos P. 1995. Assessment of trace metal toxicity using molecular, physiological and behavioral biomarkers // Mar. Pollut. Bull. V. 31. P. 19. https://doi.org/10.1016/0025-326X(95)00006-9
  19. Dionisio Pires L.M., Bontes B.M., Van Donk E., Ibelings B.W. 2005. Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha // J. Plankton Res. V. 27. № 4. P. 331. https://doi.org/10.1093/plankt/fbi008
  20. Gagné F., Gélinas M., Fortier M., Fournier M. 2018. The effects of cyanobacterial blooms on the immune system of Elliptio complanata in urban and agricultural areas in the Yamaska River watershed // ISJ. V. 15. P. 39.
  21. Ger K.A., Arneson P., Goldman C.R., Teh S.J. 2010a. Species specific differences in the ingestion of Microcystis cells by the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi // J. Plankton Res. V. 32. № 10. P. 1479. https://doi.org/10.1093/plankt/fbq071
  22. Ger K.A., Teh S.J., Baxa D.V. et al. 2010б. The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco Estuary // Freshwater Biol. V. 55. № 7. P. 1548. https://doi.org/10.1111/j.1365-2427.2009.02367.x
  23. Gibble C.M., Peacock M.B., Kudela R.M. 2016. Evidence of freshwater algal toxins in marine shellfish: Implications for human and aquatic health // Harmful Algae. V. 59. P. 59. https://doi.org/10.1016/j.hal.2016.09.007
  24. Jeffrey S.W., Humprhråy G.E. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. // Biochim. and Physiol. Pflanz. Bd 167. № 2. P. 191. https://doi.org/10.1016/s0015-3796(17)30778-3
  25. Klishko O., Lopes-Lima M., Froufe E. et al. 2017. Taxonomic reassessment of the freshwater mussel genus Unio (Bivalvia: Unionidae) in Russia and Ukraine based on morphological and molecular data // Zootaxa. V. 4286. № 1. P. 93. https://doi.org/10.11646/zootaxa.4286.1.4
  26. Kurbatova S.A., Berezina N.A., Sharov A.N. et al. 2022. Interactions of Cyanobacteria and Aquatic Organisms: Can Crustaceans Facilitate Cyanobacteria Bloom? // Russ. J. Ecol. V. 53. № 6. P. 555. https://doi.org/10.1134/S1067413622060078
  27. Medvedeva N., Zaytseva T., Kuzikova I. 2017. Cellular responses and bioremoval of nonylphenol by the bloom-forming cyanobacterium Planktothrix agardhii 1113 // J. Mar. Syst. V. 171. P. 120. https://doi.org/10.1016/j.jmarsys.2017.01.009
  28. Merel S.D., Walker R., Chicana Sh. Snyder et al. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins // Environ. Int. V. 59. P. 303. https://doi.org/10.1016/j.envint.2013.06.013
  29. Miller M.A., Kudela R.M., Mekebri A. et al. 2010. Evidence for a Novel Marine Harmful Algal Bloom: Cyanotoxin (Microcystin) Transfer from Land to Sea Otters // PLoS ONE. V. 5. № 9. e12576. https://doi.org/10.1371/journal.pone.0012576
  30. Mohamed Z.A., Bakr A.A., Ghramh H.A. 2018. Grazing of the copepod Cyclops vicinus on toxic Microcystis aeruginosa: potential for controlling cyanobacterial blooms and transfer of toxins // Oceanol. Hydrobiol. Stud. V. 47. № 3. P. 296. https://doi.org/10.1515/ohs-2018-0028
  31. Paerl H.W. 2017. Controlling cyanobacterial harmful blooms in freshwater ecosystems // Microb. Biotechnol. V. 10. № 5. P. 1106. https://doi.org/10.1111/1751-7915.12725
  32. Paldavičienė A., Zaiko A., Mazur-Marzec H., Razinkovas-Baziukas A. 2015. Bioaccumulation of microcystins in invasive bivalves: A case study from the boreal lagoon ecosystem // Oceanologia. V. 57. № 1. P. 93. https://doi.org/10.1016/j.oceano.2014.10.001
  33. Rippka R., Deruelles J., Waterbury J.B. et al. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria // Microbiology. V. 111. P. 1. https://doi.org/10.1099/00221287-111-1-1
  34. Sipiä V.O., Kankaanpää H.T., Pflugmacher S. et al. 2002. Bioaccumulation and Detoxication of Nodularin in Tissues of Flounder (Platichthys flesus), Mussels (Mytilus edulis, Dreissena polymorpha), and Clams (Macoma balthica) from the Northern Baltic Sea // Ecotoxicol. Environ. Saf. V. 53. № 2. P. 305. https://doi.org/10.1006/eesa.2002.2222
  35. Sitnikova T., Kiyashko S.I., Maximova N. et al. 2012. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology // Hydrobiologia. V. 682. P. 75. https://doi.org/10.1007/s10750-011-0685-5
  36. Sutradhar M. 2022. The current scenario and future aspects of Cyanotoxins: A Review Study // J. Mater. Environ. Sci. V. 13. № 07. P. 768.
  37. Vanderploeg H.A., Johengen T.H., Liebig J.R. 2009. “Feedback between zebra mussel selective feeding and algal composition affects mussel condition: did the regime changer pay a price for its success? // Freshwater. Biol. V. 54. № 1. P. 47. https://doi.org/10.1111/j.1365-2427.2008.02091.x
  38. Wood R. 2016. Acute animal and human poisonings from cyanotoxin exposure – A review of the literature // Environ. Int. V. 91. P. 276. https://doi.org/10.1016/j.envint.2016.02.026
  39. Xing Q., Zhang L., Li Y. et al. 2019. Development of novel cardiac indices andassessment of factors affecting cardiac activity in a bivalve mollusk Chlamys farreri // Front. Physiol. V. 10. P. 293. https://doi.org/10.3389/fphys.2019.00293
  40. Zurawell R.W., Chen H., Burke J.M., Prepas E.E. 2005. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments // J. Toxicol. Environ. Part B. V. 8. № 1. P. 1. https://doi.org/10.1080/10937400590889412

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (190KB)
3.

Download (36KB)

Copyright (c) 2023 А.Н. Шаров, Т.Б. Зайцева, Н.Г. Медведева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies