Discrete Acoustics: ARMA-modeling of Time Processes, Theory

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In physics, in particular, acoustics, time is traditionally considered as a continuous coordinate. Some exception is signal processing, where sampling is necessary for calculations on computers. But all acoustic problems are formulated and solved using time-continuous models described by differential equations and their solutions in the form of continuous time functions. Meanwhile, these problems can be formulated and solved in an equivalent way using discrete-time models described by finite-difference equations and their solutions in the form of time series. As the experience of some other fields of science, for example, control theory, shows, the discrete approach has a number of advantages over the continuous approach, the use
of which greatly facilitates the solution of many problems. This paper aims to partially fill the gap in acoustics that exists here and is aimed at creating the theoretical foundations of a discrete-time approach to solving acoustic problems. The paper is limited to the consideration of one oscillatory system widely used in acoustics— a linear structure with N degrees of freedom consisting of lumped inertial, elastic and dissipative elements, to which, in particular, the finite element method leads. For several continuous models of this system, equivalent
discrete-time models are constructed in the paper, finite-difference equations are derived and their solutions are obtained. The criterion of equivalence of continuous and discrete models in the paper is the mathematically exact equality of the corresponding solutions at all discrete points in time. Based on this criterion, analytical relations have been established between the parameters of continuous and discrete models and their equations, which make it possible to build its discrete-time model based on a continuous model of the system
and, conversely, to build its continuous model based on a known discrete model. Special attention is paid in the paper to the forced vibrations of the system under the action of kinematic excitation, which is important in many acoustic problems, whereas in the literature only force excitation is considered. The paper also discusses
one of the most useful properties of discrete modeling—the simplicity of constructing discrete models based on experimentally measured signals. A corresponding example is given. Note that the term “ARMAmodel” is an abbreviation for “autoregressive and moving average model”, generally accepted in control theory, systems theory and other fields of science.

About the authors

Yu. I. Bobrovnitskii

Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, 101000 Russia

Email: yuri@imash.ac.ru
Россия, 101990, Москва, Малый Харитоньевский пер. 4

I. A. Karpov

Blagonravov Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, 101000 Russia

Author for correspondence.
Email: yuri@imash.ac.ru
Россия, 101990, Москва, Малый Харитоньевский пер. 4

References

  1. Deistler M. Identification and time series analysis: past, present and future // Proc. of a workshop “Statistics Theory and Control”, Laurence, Kansas, 2002. Berlin: Springer-Verlag, 2002. P. 97–109.
  2. Бокс Дж., Дженкинс Г.Д. Анализ временных рядов. Прогноз и управление. В 2-х томах. Перевод с англ. под ред. Писаренко В.Ф. М.: Мир, 1974. 604 с.
  3. Бриллинджер Ф. Временные ряды. Обработка данных и теория. Перевод с англ. под ред. Колмогорова А.Н. М.: Мир, 1980. 536 с.
  4. Марпл мл. С.Л. Цифровой спектральный анализ и его приложения. Перевод с англ. под ред. Рыжака И.С. М.: Мир, 1990. 584 с.
  5. Jury E.I. Sampled data control systems. NY: Wiley, 1958. 453 p.
  6. Цыпкин Я.З. Основы теории автоматических систем. М.: Наука. Гл. ред. физ.-мат. лит., 1977. 510 с.
  7. Åström K.J., Wittenmark B. Computer controlled systems. Theory and Design. Englewood Cliffs, NJ: Prentice-Hall, 1984. 558 p.
  8. Systems and control Encyclopedia / Ed. Singh M.G. Oxford: Pergamon Press, 1987. 464 p.
  9. Поляк Б.Т., Хлебников М.В., Рапопорт Л.Б. Математическая теория автоматического управления. М.: ЛЕНАНД, 2019. 500 с.
  10. Эйкхофф П. Основы идентификации систем управления. Оценивание параметров и состояний. Перевод с англ. под ред. Райбмана Н.С. М.: Мир, 1975. 681 с.
  11. Söderström T., Stoica P. System identification. NJ: Prentice-Hall, 1989. 620 p.
  12. Льюнг Л. Идентификация систем. Теория для пользователя. Перевод с англ. под ред. Цыпкина Я.З. М.: Наука. Гл. ред. физ.-мат. лит., 1991. 432 с.
  13. Pintelon R., Shoukens J. System identification. A frequency domain approach. NY: IEEE Press, 2001. 750 p.
  14. Оппенгейм А.В., Шафер Р.В. Цифровая обработка сигналов. 3-е издание. Перевод с англ. под ред. Боева С.Ф. М.: Техносфера, 2019. 1048 с.
  15. IFAC Proceedings Volumes in ScienceDirect.com by Elsevier. https://sciencedirect.com/journal/ifac-proceedings-volumes
  16. IFAC Papers OnLine in ScienceDirect.com by Elsevier. https://sciencedirect.com/journal/ifac-papersonline/issues
  17. Markel J., Gray A. Linear prediction of speech. NY: Springer, 1976.
  18. Айвазян Г.А., Фантаццини Д. Эконометрика: продвинутый курс с приложениями в финансах. М.: Магистр: Инфра-М, 2014. 944 с.
  19. Hoel S., Omenzetter P. Optimal selection of autoregressive model coefficients for early damage detectability with an application to wind turbine blades // Mechanical Systems and Signal Processing. 2016. V. 70–71. P. 557–577.
  20. Sakellariou J.S., Fassois S.D., Sakaris C.S. Vibration-based damage localization and estimation via the stochastic function model-based method: an overview // Structural Health Monitoring. 2018. V. 17. № 6. P. 1335–1438.
  21. Candy J.V., Fisher K.A., Case J.E., Goodrich T.W. Multichannel spectral estimation in acoustics: a state-space approach // J. Acoust. Soc. Am. 2020. V. 148. № 2. P. 759–779.
  22. Карпов И.А. Параметрическое моделирование виброакустических дискретно-временных случайных процессов и применение для идентификации колебательных систем // Ученые записки физического факультета Московского университета. 2020. № 1. ID 2011701.
  23. Karpov I.A., Grebennikov A.S., Kim A.A. Application of autoregressive moving average modelling of random processes to identify the loss factor of linear oscillatory systems // Acoust. Phys. 2021. V. 67. № 6. P. 694–699.
  24. Котельников В.А. О пропускной способности “эфира” и проволоки в электросвязи // Успехи физ. наук. 2006. Т. 176. № 7. С. 762–770 (перепечатка статьи 1933 года).
  25. Гельфонд А.О. Исчисление конечных разностей. 2-е изд. М.: Гос. изд-во физ.-мат. лит-ры, 1959. 400 с.
  26. Макаров О.И., Шанин А.В., Корольков А.И. Интеграл Зоммерфельда в задачах моделирования дифракции акустических волн с помощью треугольной сетки // Акуст. журн. 2023. Т. 69. № 2. С. 129–145.
  27. Reinders E. System identification methods for (operational) modal analysis: review and comparison // Archives of Computational Methods in Engineering. 2012. V. 19. № 1. P. 51–124.
  28. Стретт Дж.В. (Лорд Рэлей). Теория звука. Том 1. Пер. с англ. под ред. Рытова С.М. М.: ГИТТЛ, 1955. 509 с.
  29. Скучик Е. Простые и сложные колебательные системы. Пер с англ. под ред. Лямшева Л.М. М.: Мир, 1971. 552 с.
  30. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1966. 576 с.
  31. Lin C.-Sh., Chiang D.-Y., Tseng T.-C. Extended time series algorithm for model identification from nonstationary ambient response data only // Mathematical Problems in Engineering. 2014. Article ID 391815. 12p.
  32. Pandit S.M., Wu S.M. Time series and system analysis with application. NY: John Wiley Sons, 1983.
  33. Pi Y.L., Mickleborough N.C. Modal identification of vibrating structures using ARMA model // J. Eng. Mech. 1989. V. 115. P. 2232–2250.
  34. Akaike H. A new look at the statistical model identification // IEEE Trans. on Automatic Control. 1974. V. AC-19. № 6. P. 716–723.
  35. Hannan E.J. Estimation of order of an ARMA process // Annals of Statistics. 1980. V. 8. P. 1071-1081.
  36. MATHLAB https://se.mathworks.com/help/ident/ug/ model-quality-metrics.html
  37. Корн Г., Корн Т. Справочник по математике. Для научных работников и инженеров. Определения, теоремы, формулы. Перевод с англ. под ред. Арамановича И.Г. М.: Наука. Гл. ред. физ.-мат. лит., 1968. 720 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (57KB)
3.

Download (1MB)
4.

Download (1MB)

Copyright (c) 2023 Ю.И. Бобровницкий, И.А. Карпов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies